Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Figure S1. TEM images of (A) AuNS and (B) AuNS@Ag. (C) EDS spectra of AuNS@Ag and AuNS. (D) XRD patterns of AuNS@Ag and AuNS.

Figure S2. SEM images of the obtained AuNS@Ag under various amounts of AgNO₃: (A) 0 mM, (B) 4 mM, (C) 5 mM, and (D) 6 mM. (E) UV-vis spectra of AuNS@Ag suspension. (F) The comparision of SERS intensity using four AuNS@Ag solutions (NBA with concentration at 10⁻⁶ M). The inset depicts the dependence of SERS intensity on concentration of AgNO₃ added, error bars indicate the standard deviation from 5 spectra.

Figure S3. SEM images of AuNS@Ag/SMCSL substrate fabricated by evaporating 10 μ L of AuNS@Ag with different mass concentration of Au content: (A) 25 mg·mL⁻¹; (B) 12.5 mg·mL⁻¹; (C) 5 mg·mL⁻¹; (D) 1.5 mg·mL⁻¹. (E) SERS spectra of NBA absorbed on aforementioned substrates. The inset shows the dependence of signal intensity (592 cm⁻¹) on mass concentration of Au content, error bars indicate the standard deviation from 5 spectra.

SERS/cm ⁻¹	Assignment
1157	C-H in-plane bend
1270	C-H stretching in the benzenoid
1333	C-H in-plane bend
1422	Ring deformation, C-H in-plane bend
1502	Ring deformation, C-H in-plane bend
1602	NH ₂ scissor

Table S1. Main SERS Band Assignments of OPD¹.

Table S2. Table S2. Main SERS Band Assignments of 6-TG².

SERS/cm ⁻¹	Assignment
821	$\delta^{5,6}_{\text{ring}}(20) + \delta^{\text{out}} \text{N9C1'}(18) + \delta^{\text{out}}_{\text{ribose}}(10) + \delta^{\text{out}} \text{C2'-O2'}(9)$
	+ vN9-C1'(6) + vC8-N9(6)
900	$\delta^{5,6}_{ring}(45) + vC5 - N7(9) + vN3 - C4(8) + vC6 = S(6)$
928	$\delta^{out}C8H8(88)$
1016	$vC1'-C2'(20) + \delta^{5}_{ring}(11) + \delta^{rock}C5'H_{2}(9) + \delta C2'H (45)$
1265	$\delta C8H8(40) + \delta^{5,6}_{ring}(16) + vN9-C1'(7) + vN7-C8(5)$
1297	$vC8-N9(19) + \delta C1'H(16) + vN9-C1'(11) + vC5-N7(6) +$
	vN1-C2(5)
1387	δ C2H2(28) + vC5-N7(25) + $\delta^{6}_{ring}(10)$ + vN7-C8(8) + vC2-
	N3(8) + vC4-C5(7)
1495	δ^{sciss} C5'H ₂ (98)
1589	vN3-C4(38) + vC4-C5(14) + vC4-N9(12) + vN7-C8(9) +
	$\delta_{ring}^{6}(9) + vC2-N3(7) + \delta N1H1(6)$

SERS/cm ⁻¹	Assignment
910	γ (=C _b H2) _s
1121	N5(C_{β} -methyl stretch)
1209	v13
1316	$\delta(C_aH=)_4$
1341	v41
1443	$\delta(=C_bH_2)_s$
1580	v37
1621	$v(C_a=C_b)$

Table S3. Main SERS Band Assignments of HGB³.

Reference

1 H. M. Badawi, W. Forner and S. A. Ali. Spect. Chem. Acta Part A, 2013, 112, 388-396. OPD

2 A. V. Szeghalmi, L. Leopold, S. Pînzaru, V. Chis, I. Silaghi-Dumitrescu, M. Schmitt, J. Popp and W. Kiefer, *Biopolymers*, 2005, **78**, 298–310.

3 G. Smulevich and T. G. Spiro, J. Phys. Chem., 1985, 89, 5168-5173.