## **SUPPORTING INFORMATION**

## A New Rod-Shaped BODIPY-Acetylene Molecule for Solution-Processed Semiconducting Microribbons in N-Channel Organic Field-Effect Transistors

Mehmet Ozdemir,<sup>1</sup> Donghee Choi,<sup>2</sup> Y. Zorlu,<sup>3</sup> B. Cosut,<sup>3</sup> Hyungsug Kim,<sup>2</sup>

Choongik Kim\*,<sup>2</sup> and Hakan Usta\*1

<sup>1</sup> Department of Materials Science and Nanotechnology Engineering, Abdullah Gül University, Kayseri, Turkey

<sup>2</sup> Department of Chemical and Biomolecular Engineering, Sogang University, Mapo-gu, Seoul, Korea

<sup>3</sup> Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey

\*Correspondence to: Prof. Hakan Usta (E-mail:hakan.usta@agu.edu.tr), Prof. Choongik Kim (E-mail: <u>choongik@sogang.ac.kr</u>).



Figure S1. <sup>1</sup>H NMR spectra of compound 1 in CDCl<sub>3</sub> at room temperature.



Figure S2. <sup>1</sup>H NMR spectra of compound 2 in CDCl<sub>3</sub> at room temperature.



Figure S3. <sup>1</sup>H NMR spectra of compound 3 in CDCl<sub>3</sub> at room temperature.



Figure S4. <sup>1</sup>H NMR spectra of compound BDY-Th-Br in CDCl<sub>3</sub> at room temperature.



Figure S5. <sup>1</sup>H NMR spectra of compound BDY-PhAc-BDY in CDCl<sub>3</sub> at room temperature.



Figure S6. <sup>13</sup>C NMR spectra of compound BDY-PhAc-BDY in CDCl<sub>3</sub> at room temperature.



Figure S7. Positive ion and linear mode MALDI TOF-MS spectrum of BDY-PhAc-BDY.



**Figure S8.** Fluorescence emission spectra of **BDY-PhAc-BDY** in dichloromethane (DCM) and toluene solutions  $(1x10^{-5} \text{ M})$  (Excitation wavelength= 510 nm).



**Figure S9.** Simulated XRD powder pattern of **BDY-PhAc-BDY** with the selected matching peak at  $2\theta = 8.92^{\circ}$  corresponding to (010) diffraction plane.



**Figure S10.** Representative output plot for the OFET devices fabricated with solution-sheared **BDY-PhAc-BDY** thin-film.

## X-ray data collection and structure refinement

Single crystal x-ray diffraction analysis was carried out on an Bruker APEX II QUAZAR threecircle diffractometer using monochromatized Mo K $\alpha$  X-radiation ( $\lambda = 0.71073$  Å) using  $\phi$  and  $\omega$ technique at 173(2) K. Indexing was performed using APEX2.<sup>1</sup> Data integration and reduction were carried out with SAINT V8.34A.<sup>2</sup> Absorption correction was performed by multi-scan method implemented in SADABS V2014/5.3 Space groups were determined using XPREP implemented in APEX2. The structure was solved using in SIR-92.<sup>4</sup> The least-square refinement on F<sup>2</sup> was achieved with the CRYSTALS software.<sup>5</sup> All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C---H in the range 0.93--0.98 Å) and Uiso(H) (in the range 1.2-1.5 times Ueg of the parent atom), after which the positions were refined with riding constraints. The crystals available for X-ray structural analysis were of quite poor quality and weak scatterers at high resolution ( $\approx 1.00$  Å), thus resulting in comparatively high R/wR values. A crystallographic data and refinement detail of the data collection for BDY-PhAc-BDY is given in Table 1. The final geometrical calculations and the molecular drawings were carried out with PLATON program.<sup>6</sup>

| Crystal parameters                     | BDY-PhAc-BDY                  |
|----------------------------------------|-------------------------------|
| ССРС                                   | 1482958                       |
| Empirical Formula                      | $C_{56}H_{60}B_2F_4N_4O_2S_2$ |
| Formula weight (g. mol <sup>-1</sup> ) | 982.86                        |
| Temperature (K)                        | 173(2)                        |
| Wavelength (Å)                         | 0.71073                       |
| Crystal system                         | Triclinic                     |
| Space group                            | <i>P</i> -1                   |

Table S1. Crystal data and refinement parameters for BDY-PhAc-BDY.

| a (Å)                                              | 10.1366 (12)                   |
|----------------------------------------------------|--------------------------------|
| b (Å)                                              | 10.9280 (12)                   |
| c (Å)                                              | 12.6758 (14)                   |
| α(°)                                               | 66.265 (7)                     |
| β(°)                                               | 87.951 (7)                     |
| γ(°)                                               | 81.738 (7)                     |
| Crystal size (mm)                                  | $0.46 \times 0.44 \times 0.08$ |
| <i>V</i> (Å <sup>3</sup> )                         | 1271.65 (14)                   |
| Ζ                                                  | 1                              |
| $\rho_{calcd}$ (Mg. cm <sup>-3</sup> )             | 1.283                          |
| μ (mm <sup>-1</sup> )                              | 0.17                           |
| <i>F</i> (000)                                     | 518                            |
| $\theta$ range for data collection (°)             | 1.755 - 25.027                 |
| h/k/l                                              | -11/12, -11/13, 0/15           |
| Measured Reflections                               | 11886                          |
| Independent reflections ( <i>R<sub>int</sub></i> ) | 4418 (0.103)                   |
| Data/restraints/parameters                         | 2591/36/316                    |
| Goodness-of-fit on $F^2$ (S)                       | 0.95                           |
| $R[F^2 > 2s(F^2)]$                                 | 0.0860                         |
| wR <sub>2</sub> (all data)                         | 0.2139                         |
| Largest diff. peak and hole (e.Å <sup>-3</sup> )   | 1.00 and -0.37                 |

## REFERENCES

<sup>1.</sup> Bruker (2014) APEX2, version 2014.11-0, Bruker AXS Inc., Madison, Wisconsin, USA

<sup>2.</sup> Bruker (2013) SAINT, version V8.34A, Bruker AXS Inc., Madison, Wisconsin, USA

<sup>3.</sup> Bruker (2014) SADABS, version 2014/5, Bruker AXS Inc., Madison, Wisconsin, USA

<sup>4.</sup> Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Cryst. 1994, 27, 435

<sup>5.</sup> Betteridge P. W., Carruthers J. R., Cooper R. I., Prout K, Watkin D. J. J. (2003) Appl Cryst 36:1487

<sup>6.</sup> A. L. Spek, Acta Cryst. 2009, D65, 148-155] and MERCURY [C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Cryst., 2006, 39, 453-457