Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Macrometallocycle Binuclear NHC Silver(I): Synthesis, Structure and Recognition for *o*-Phenylenediamine

Qing-Xiang Liu*, Deng-Che Wei, Dong-Xue Zhao, Xiao-Feng Sun, Zhi-Xiang Zhao and Jing Yan

Table of Contents

- 1. CCDC numbers for complexes 1-4.
- 2. The dihedral angles in complexes 1-4 (Table S1).
- 3. The distances (Å) of Ag \cdots Ag and π - π interactions for 1-4 (Table S2).
- 4. H-Bonding geometry of complexes 1-4 (Table S3).
- 5. The crystal packings of complexes 1-4 (Fig. S1-S4).
- 6. The fluorescence and UV/vis studies of complex 4 (Fig. S5-S7).
- 7. HRMS spectra of 4 OPD (Fig. S8).
- 8. IR spectra of 4, OPD and 4 OPD (Fig. S9).
- 9. The ¹H NMR and ¹³C NMR spectra of precursors L¹H₂ (PF₆)₂-L⁴H₂ (PF₆)₂ and complexes 1-4 (Fig. S10- Fig. S29).

1. CCDC numbers for complexes 1-4.

CCDC 1408696-1408699 contains the supplementary crystallographic data for 1-4. free complexes These data can be obtained of charge via http//www.ccdc.cam.ac.uk/conts/retrieving.html, Cambridge or from the Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

2. The dihedral angles of complexes 1-4.

Table S1. The dihedral angles (°) between two benzimidazole (or imidazole) rings in the same NHC-Ag-NHC unit (A), the dihedral angles (°) between two benzimidazole (or imidazole) rings in the same ligand (B), the dihedral angles (°) between benzimidazole (or imidazole) rings and anthraquinone ring in the same ligand (C), the dihedral angles (°) between two anthraquinone rings in each molecule (D) and the dihedral angles (°) between benzimidazole (or imidazole) rings and adjacent benzene rings (E) for complexes 1-4.

Compounds	Α	В	C D		Ε
1	23.5(5)	23.5(5)	70.4(6), 73.8(6)	15 2(9)	89.2(8), 71.4(9)
	23.5(5)	23.5(5)	88.4(8), 78.6(3)	15.2(8)	
2	22.7(3)	22.7(3)	76.5(4), 79.0(3)	26.0(5)	88.4(5), 87.9(3)
	22.7(2)	22.7(3)	79.7(3), 74.1(4)	20.9(3)	88.3(5), 74.7(4)
3	36.4(3)	45.5(3)	9.3(9), 47.6(3)	10.0(5)	81.8(1), 77.5(9)
	50.2(3)	45.5(4)	7.6(5), 48.5(6)	10.0(3)	66.4(4), 76.4(5)
4	59.6(2)	39.1(3)	46.1(3), 42.8(3)	28 6(2)	68.3(3), 87.6(4)
	59.3(3)	29.4(2)	56.9(3), 53.3(4)	36.0(2)	86.3(5), 71.2(3)

3. The distances (Å) of Ag \cdots Ag and π - π interactions for 1-4.

Complexed	Ag⊶Ag	π-π			
Complexes		face-to-face	center-to-center		
	11.048(9)	3.463(1) (anthraquinone	3.662(7) (anthraquinone		
1		and anthraquinone);	and anthraquinone);		
1		3.378(1) (anthraquinone	3.561(2) (anthraquinone		
		and benzimidazole)	and benzimidazole)		
	12.141(5)	3.625(2) (anthraquinone	3.747(8) (anthraquinone		
2		and anthraquinone);	and anthraquinone);		
2		3.551(6) (anthraquinone	3.755(1) (anthraquinone		
		and benzene)	and benzene)		
		3.221(2) and 3.577(1)	3.453(6) and 3.666(0)		
3	11.537(1)	(anthraquinone and	(anthraquinone and		
		benzimidazole)	benzimidazole)		
	11.507(1)	3.315(2) and 3.391(2)	3.473(4) and 3.706 (7)		
4		(anthraquinone and (anthraquinone			
		imidazole)	imidazole)		

Table S2. The distances (Å) of Ag \cdots Ag and π - π interactions for 1-4.

4. H-Bonding geometry of complexes 1-4.

	D-H ··· A	D-H	$H \cdots A$	D···A	D-H ···A
1	C(2)- $H(2)$ ···F(3) ⁱⁱ	0.950(2)	2.654(6)	3.565(8)	160.7(3)
	$C(78)$ -H(78B) \cdots F(1) ⁱⁱⁱ	0.980(2)	2.415(6)	3.347(8)	158.7(3)
2	$C(32)-H(32A)\cdots F(6)^{ii}$	0.970	2.585(5)	3.193(7)	120.8(3)
	$C(30)-H(30)\cdots F(4)^{iii}$	0.930	2.323(4)	3.227(6)	163.8(3)
	$C(31)-H(31) \cdots F(6)^{iii}$	0.930	2.456(6)	3.173(3)	133.9(3)
	$C(21)-H(21)\cdots F(4)^{iv}$	0.929	2.608(4)	3.192(5)	121.3(2)
	$C(10)-H(10)\cdots F(2)^{v}$	0.929	2.425(6)	3.239(7)	146.2(3)
3	$C(6)$ -H(6A) $\cdot \cdot F(9)^{i}$	0.949(7)	3.188(9)	3.491(1)	100.6(4)
	$C(86)-H(86)\cdots F(7)^{ii}$	0.951(6)	2.456(1)	3.346(1)	155.5(4)
	$C(45)-H(45)\cdots F(11)^{ii}$	0.948(7)	2.723(1)	3.494(1)	138.8(5)
	$C(54)-H(54)\cdots F(11)^{ii}$	0.950(1)	3.286(1)	3.519(1)	96.2(7)
	$C(59)-H(59)\cdots F(9)^{ii}$	0.950(1)	3.094(9)	3.867(1)	139.5(1)

Table S3. H-Bonding Geometry (Å, $^{\circ}$) for 1-4.

4	$C(43)-H(43)\cdots F(3)^{i}$	0.930	2.756(9)	3.734(3)	165.9(2)
	$C(52)-H(52B)\cdots F(6)^{ii}$	0.969	2.736(5)	3.449(7)	130.8(3)
	$C(12)-H(12B)\cdots F(1)^{iii}$	0.970	2.776(9)	3.734(3)	165.9(2)
	$C(77)-H(77)\cdots F(5)^{iv}$	0.970	2.849(9)	3.474(3)	124.3(1)
	$C(4)-H(4)\cdots F(12)^{ii}$	0.930	2.739(7)	3.516(1)	141.5(4)
	$C(62)-H(62)\cdots F(12)^{v}$	0.930	2.997(7)	3.722(1)	135.9(5)

Symmetry code: ii: -2 + x, 2 + y, z, iii: -2 + x, 2 + y, -1 + z for **1**; ii: 0.5 + x, 1.5 - y, -0.5 + z, iii: -x, 1 - y, 1 - z for **2**; i = x, y, z, ii: 1 - x, 1 - y, 1 - z for **3**; i = -2 + x, 0.5 - y, -0.5 + z, ii: -1 - x, 0.5 + y, 1.5 - z, iii = -2 + x, 1 + y, z, iv = -2 + x, y, z for **4**.

5. The crystal packings of complexes 1-4.

2D supramolecular layer of **1** (Fig. S1) is formed through C-H \cdots F hydrogen bonds^{S1} and intermolecular π - π interactions^{S2} from anthraquinone rings and benzimidazole rings with the face-to-face separation of 3.378(1) Å (the center-to-center separation being 3.561(2) Å). In C-H \cdots F hydrogen bonds, the hydrogen atoms are from methylene and benzyl groups (the data of hydrogen bonds being given in Table S3).

In the crystal packing of **2** (Fig. S2), 2D supramolecular layer is formed through C-H \cdots F hydrogen bonds and intermolecular π - π interactions between anthraquinone rings and benzene rings with the face-to-face separation of 3.551(6) Å (the center-to-center separation being 3.755(1) Å). In the hydrogen bonds, the hydrogen atoms are from methylene groups, anthraquinone rings and imidazole rings.

In the crystal packing of **3** (Fig. S3), 2D supramolecular layer is formed through C-H \cdots F hydrogen bonds. In the hydrogen bonds, the hydrogen atoms are from the benzyl groups and benzimidazole groups.

In the crystal packing of 4 (Fig. S4), 2D supramolecular layer is formed through C-H \cdots F hydrogen bonds. In the hydrogen bonds, the hydrogen atoms are from methylene groups and benzyl groups.

Fig. S1 2D supramolecular layer of **1** via C-H···F hydrogen bonds and π - π interactions. All hydrogen atoms except those participating in C-H··F hydrogen bonds were omitted for clarity.

Fig. S2 2D supramolecular layer of **2** via C-H \cdots F hydrogen bonds and π - π interactions. All hydrogen atoms except those participating in C-H \cdots F hydrogen bonds were omitted for clarity.

Fig. S3 2D supramolecular layer of 3 via C-H \cdots F hydrogen bonds. All hydrogen atoms except those participating in C-H \cdots F hydrogen bonds were omitted for clarity.

Fig. S4 2D supramolecular layer of 4 via C-H \cdots F hydrogen bonds. All hydrogen atoms except those participating in C-H \cdots F hydrogen bonds were omitted for clarity.

References

- S1 W. Wei, M. Y. Wu, Y. G. Huang, Q. Gao, F. L. Jiang and M. C. Hong, Z. Anorg. Allg. Chem., 2008, 634, 2623-2628.
- S2 A. L. Pickering, G. Seeber, D. L. Long and L. Cronin, *CrystEngComm.*, 2005, 7, 504-510.

6. The fluorescence and UV/vis studies of complex 4.

Fig. S5 Emission (at 539 nm) of **4** at different concentrations of *o*-phenylenediamine (0, 0.04, 0.08, 0.12, 0.17, 0.24, 0.30, 0.35 μ M) added, normalized between the minimum emission (0.0 μ M *o*-phenylenediamine) and the emission (0.35 μ M *o*-phenylenediamine). The detection limit was determined to be 1.0×10^{-8} mol/L.

Fig. S6 UV/vis absorption spectra of 4 (1.0×10^{-5} mol/L) in the presence of different concentrations of *o*-phenylenediamine in CH₃OH at 25 °C. The concentrations of

o-phenylenediamine for curves 1-18 (from bottom to top) are: 0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.725, 0.85, 1.0×10^{-5} mol/L.

Fig. S7 Benesi-Hildebrand plot of 4 $(1.0 \times 10^{-5} \text{ mol/L}))$ in the presence of *o*-phenylenediamine in CH₃OH at 422 nm at 25°C. C_{OPD} is 0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.725, 0.85, 1.0×10^{-5} mol/L.

7. HRMS spectra of 4 OPD.

Fig. S8 HRMS spectrum of **4** OPD. MS (EI): $m/z [(4 \text{ OPD})/2]^+ = 798.4090$.

8. IR spectra of 4, OPD and 4 OPD.

Fig. S9 Infrared spectroscopy of complex 4 (top), 4 OPD (middle) and OPD (bottom).

9. The ¹H NMR and ¹³C NMR spectra of precursors $L^{1}H_{2}$ (PF₆)₂- $L^{4}H_{2}$ (PF₆)₂ and complexes 1-4.

1,4-bis(2'-bromoethoxy)-9,10-anthraquinone.

Fig. S11 The ¹³C NMR (100 MHz, DMSO- d_6) spectrum of 1,4-bis(2'-bromoethoxy)-9,10-anthraquinone.

1,4-bis(3'-bromopropoxy)-9,10-anthraquinone.

Fig. S13 The 13 C NMR (100 MHz, DMSO- d_6) spectrum of 1,4-bis(3'-bromopropoxy)-9,10-anthraquinone.

Fig. S14 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of L¹H₂ (PF₆)₂.

Fig. S15 The ¹³C NMR (100 MHz, DMSO- d_6) spectrum of L¹H₂ (PF₆)₂.

Fig. S16 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of L²H₂ (PF₆)₂.

Fig. S17 The ¹³C NMR (100 MHz, DMSO- d_6) spectrum of L^2H_2 (PF₆)₂.

Fig. S18 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of L^3H_2 (PF₆)₂.

Fig. S20 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of L^4H_2 (PF₆)₂.

Fig. S21 The ¹³C NMR (100 MHz, DMSO- d_6) spectrum of L⁴H₂ (PF₆)₂.

Fig. S22 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of complex **1**.

Fig. S24 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of complex 2.

Fig. S26 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of complex **3**.

Fig. S27 The 13 C NMR (100 MHz, DMSO- d_6) spectrum of complex 3.

Fig. S28 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of complex **4**.

Fig. S29 The 13 C NMR (100 MHz, DMSO- d_6) spectrum of complex **4**.