Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Insights into selenylation of imidazo[1,2-a]pyridine: synthesis, structural and antimicrobial

evaluation

Sanjeev Kumar,^a Nidhi Sharma,^a Indresh K. Maurya,^b Ajay Kumar,^c Sangit Kumar,^c K. K.

Bhasin*^a and Rohit K. Sharma*^a

^aDepartment of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University,

Chandigarh, 160014 India

^bDepartment of Microbial Biotechnology, Panjab University, Chandigarh, 160014 India

^cIndian Institute of Science Education and Research (IISER), Bhopal, India

Table of Contents

S. No.	Contents	Page No.
1.	Experimental	S3-S5
2.	¹ H and ¹³ C-NMR of compounds 3a-c , 4a-c	S6-S11
3.	¹ H, ¹³ C-NMR and Mass spectra of compounds 5a-k	S12-33
4.	Crystal data for compound 5a (Table S1)	S34
5.	Optimized structures of Compounds 5a-k (Table S2)	S 35
6.	HOMO-LUMO diagrams od compounds 5a-k (Figure S1-S2)	S36-S37
7.	Antifungal activity of synthesized compounds (Table S3)	S38
8.	Antibacterial activity of synthesized compounds (Table S4)	S39

General procedure for synthesis of 3: The compounds 3a-c were synthesized by earlier reported method¹. To a solution of chloroacetic acid (3.67g, 38.8mmol) in water (6ml), triethyl amine was added (6.12 ml, 44 mmol) dropwise at room temperature. After 10 minutes of stirring 2-aminopyridine (4.3 g, 46mmol) was added and was refluxed at 90°C for 5h. Then reaction mixture was cooled to room temperature, ethanol was added and stirred at 5°C for 2h to obtain precipitates which were filtered, washed with cold ethanol (4ml), dried to get 5.3g (89%) of intermediate 2a. This intermediate 2a (5.3g, 34.8 mmol) was dissolved in toluene (25 ml) and phosphorous oxychloride (9.7 ml, 104 mmol) was added dropwise at reflux. After refluxing for 16 h reaction mixture was cooled to room temperature and cold water (100 ml) was added, stirred for 15minutes. Aqueous layer was separated and neutralized with 10% NaOH (aq) and the precipitate was filtered and dissolved in dichloromethane. The aqueous filtrate was also extracted with dichloromethane (4x20ml). The combined organic layers were washed with brine, dried over anhydrous sodium sulphate and concentrated under vacuum to afford a brown powder. This was purified column chromatography on silica gel using hexane: ethyl acetate (90:10) as eluent to yield 5.2g (98%) of 2-chloroimidazo[1,2-a]pyridine (3a). 2-chloro-7-methylimidazopyridine (3b) and 2-chloro-7-methylimidazopyridine (3c) were prepared similarly by using 2-amino-4picoline and 2-amino-5-picoline respectively.

2-Chloroimidazo[1,2-a]pyridine (3a): Yield: : 74.6%, white crystalline solid, m.p. 76–77°C, ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.95 (d, J = 6.8 Hz, 1H), 7.39 (t, J = 4.3 Hz, 2H), 7.09 (ddd, J = 9.1 Hz, J = 6.9 Hz, J = 1.2 Hz, 1H), 6.71 (td, J = 6.8 Hz, J = 0.9 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ (ppm): 143.7, 135.5, 125.1, 116.8, 112.9, 108.1

2-Chloro-7-methylimidazopyridine (3b): Yield: 72.4%, white crystalline solid, m.p. 85–87^oC ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.89 (d, *J* = 6.9 Hz, 1H), 7.38 (s, 1H), 7.22 (s,

1H), 6.62 (dd, *J* = 6.9 Hz, *J* = 1.5 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 144.1, 136.2, 135.0, 124.3, 115.4, 115.2, 107.4, 21.2

2-Chloro-6-methylimidazopyridine (**3c**): Yield: 73.8%, white crystalline solid, m.p. 90-93⁰C ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.26 (t, *J* = 4.6 Hz, 2H), 6.91 (dd, *J* = 9.3, 1.6 Hz, 1H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 142.6, 134.9, 128.2, 122.9, 122.6, 116.0, 107.8, 17.9

General procedure for synthesis of 4a-c: Compounds 3a-c (40mmol) was added to dimethylformamide (60 ml) under ice bath at 5^{0} C. To this solution, phosphorous oxychloride (6 ml) was added dropwise. After addition reaction was allowed to stir at room temperature for 2h. The reaction mixture was poured onto crushed ice and precipitates were filtered by vacuum filtration and dissolved in dichloromethane. This organic layer was dried on anhydrous sodium sulphate and concentrated under vacuum to yield corresponding product **4a-c**.

2-Chloro-3-formylimidazo[1,2-a]pyridine (**4a**): Yield: 88%, white crystalline solid, m.p. 110-111⁰C, ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 9.35 (d, *J* = 6.8 Hz, 1H), 7.59 (d, *J* = 8.9 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.08 (td, *J* = 6.9, 1.2 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ (ppm): 176.9, 147.2, 146.0, 130.8, 127.9, 118.6, 116.9, 115.9.

2-Chloro-3-formyl-7-methylimidazopyridine (**4b**): Yield: 87%, white crystalline solid, m.p. 115-117⁰C, ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 9.20 (d, *J* = 6.9 Hz, 1H), 7.34 (s, 1H), 6.90 (dd, *J* = 6.9, 1.6 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ (ppm): 176.6, 147.4, 146.5, 142.8, 127.1, 118.8, 118.4, 115.7, 21.7

2-Chloro-3-formyl-6-methylimidazopyridine (4c): Yield: 87%, white crystalline solid, m.p. 114-115^oC, ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 9.17 (s, 1H), 7.48 (d, *J* = 9.1 Hz, 1H), 7.35 (dd, *J* = 9.1, 1.5 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ (ppm): 176.8, 146.9, 144.9, 133.6, 126.3, 126.0, 118.4, 116.1, 18.2

¹H, ¹³C-NMR of 2-Chloroimidazo[1,2-a]pyridine (3a)

¹H, ¹³C-NMR of 2-Chloro-7-methylimidazopyridine (3b)

¹H, ¹³C-NMR of 2-Chloro-6-methylimidazopyridine (3c)

¹H, ¹³C-NMR of 2-Chloro-3-formylimidazo[1,2-a]pyridine (4a)

¹H, ¹³C-NMR of 2-Chloro-3-formyl-6-methylimidazopyridine (4c)

¹H, ¹³C-NMR of 2-(o-tolylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde (5a)

¹H, ¹³C-NMR of 2-(o-tolylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde (5b)

¹H, ¹³C-NMR of 2-(p-tolylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde (5c)

¹H, ¹³C-NMR of 2-(mesitylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde (5d)

¹H, ¹³C-NMR of 6-methyl-2-(phenylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde (5e)

¹H, ¹³C-NMR of 6-methyl-2-(o-tolylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde (5f)

¹H, ¹³C-NMR of6-methyl-2-(p-tolylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde 5g

¹H, ¹³C-NMR of2-((4-methoxyphenyl)selanyl)-6-methylimidazo[1,2-a]pyridine-3-carbaldehyde (5h)

¹H, ¹³C-NMR of7-methyl-2-(phenylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde 5i

¹H, ¹³C-NMR of 7-methyl-2-(o-tolylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde 5j

¹H, ¹³C-NMR of 7-methyl-2-(p-tolylselanyl)imidazo[1,2-a]pyridine-3-carbaldehyde (5k)

Formula	$C_{14}H_{10}N_2OSe$
Mol. weight	301.2
Crystal system	Triclinic
Space group	P-1
a (Å)	5.5390(4)
b (Å)	8.1345(6)
c (Å)	13.8742(9)
α (°)	94.771(3)
β (°)	98.816(4)
γ (°)	93.294(4)
V (Å ³)	614.04(8)
Z	2
Temp in kelvin	298(2)
λ (Å)	0.71073
ρ calcd (g cm ⁻³)	1.629
$\mu (mm^{-1})$	3.05
Goodness of fit	1.015
θ range (°)	2.519-25.683
Total no. of rflns	18139
No. of unique rflns	2322
Observed data $[I > 2\sigma(I)]$	1880
R _{int}	0.0419
$R_1, wR_2 [(I > 2\sigma(I)]$	0.0303, 0.0663
R ₁ , wR ₂ (all data)	0.0453, 0.0719

Table S1. Crystal data and structure refinement for 5a

_

Compound	Optimized Structure	Compound	Optimized Structure
5a		5g	
5b		5h	
5c		5i	
5d		5j	
5e		5k	
5f			

TABLE S2: Optimized structures of Compounds 5a-k with DFT B3LYP 6-31G(d)

Figure 1. HOMO-LUMO diagram of compounds 5a-f

Figure 2. HOMO-LUMO diagram of compounds 5a-f

Compounds	С.	С.	С.	С.	С.	С.	С.	Α.
	albicans	glabrata	tropicalis	krusei	paraposlsis	Keyfer	neoformans	Niger
5a	>75.25	>75.25	>75.25	>75.25	>75.25	>75.25	>75.25	>75.25
5b	19.68	>78.75	39.37	>78.75	39.37	39.37	>78.75	>78.75
5d	21.43	10.71	>85.75	>85.75	21.43	>85.75	>85.75	>85.75
5e	19.68	19.68	19.68	9.84	>78.75	39.37	39.37	>78.75
5g	>82.25	>82.25	41.12	>82.25	>82.25	41.12	>82.25	>82.25
5h	>86.25	>86.25	>86.25	>86.25	>86.25	>86.25	>86.25	43.12
5i	19.68	>78.75	>78.75	19.68	>78.75	19.68	>78.75	>78.75
5j	>82.25	20.56	>82.25	>82.25	20.56	>82.25	>82.25	>82.25
5k	>82.25	20.56	>82.25	20.56	>82.25	20.56	>82.25	>82.25
Amphotericin B	0.36	0.18	0.36	0.36	0.36	0.18	0.09	0.18

Table S3. Antifungal activity of synthesized compounds expressed in MIC (in μ g/ml)

Table S4. Antibacterial activity of synthesized compounds in MIC (in μ g/ml)

C 1	Г	C	Г	7	C	τ.7
Compounds	<i>E</i> .	5.	<i>E</i> .	L. mono	5.	<i>V</i> .
	coli	aureus	faecalis	cytogens	pyogens	Cholera
5a	>75.25	>75.25	>75.25	18.81	>75.25	>75.25
5b	39.37	>78.75	>78.75	19.68	>78.75	>78.75
5d	21.43	21.43	>85.75	>85.75	42.875	>85.75
5e	9.84	39.37	9.84	>78.75	19.68	39.37
5g	>82.25	41.125	>82.25	20.56	10.28	>82.25
5h	21.56	>86.25	>86.25	>86.25	>86.25	>86.25
5i	19.68	19.68	>78.75	>78.75	>78.75	>78.75
5j	20.56	41.125	>82.25	>82.25	>82.25	>82.25
5k	20.56	>82.25	>82.25	10.28	>82.25	>82.25
Kanamycin	0.96	7.57	15.14	1.89	15.14	15.14

References:

 S. Kumar, N. Sharma, I. K. Maurya, A. K. K. Bhasin, N. Wangoo, P. Branda, V. Felix, K. K. Bhasin, R. K. Sharma, *European Journal of Medicinal Chemistry*, 2016, 123, 916-924.