Fluorination induced electronic effects on Pt(II) square-

planar complex of *o*-phenylenediimine ligand.

Luca Pilia, Michio M. Matsushita, Kunio Awaga and Neil Robertson

Supplementary Material

Chart S1 Structural formulae of some *n*-type or ambipolar square-planar metal complexes, whose FET properties are reported in Table S1.

Table S1. FET properties of some *n*-type or ambipolar square-planar metal complexes.

Complex	<i>p</i> -type mobility (cm ² V ⁻¹ s ⁻¹)	<i>n</i> -type mobility (cm ² V ^{-1} s ^{-1})	on/off current ratio	References
$[Ni(dpedt)_2]$ (3a)		$2 \cdot 10^{-5}$	10 ²	1
$[Ni(R_4dpedt)_2] (\mathbf{3b})$		$1.3 \cdot 10^{-3}$	>10 ⁵	2
$[Ni(bdn)_2]$ (4)	10 ⁻	10^{-4}	$10^2 - 10^3$	3
$[Ni(CF_3pedt)_2] (5)$		$1.1 \cdot 10^{-1}$	$2 \cdot 10^{6}$	4
$[Ni(H_2dpedt)(dmit)]$ (6)	10	$3 \cdot 10^{-4}$	$10^2 - 10^3$	5
[Pt(bqd) ₂] (7)		$2 \cdot 10^{-1}$	1.6	6
$[Cu(HR'd)_2]$ (8a)		$2.91 \cdot 10^{-4}$	а	7
$[Cu(R'_{2}d)_{2}]$ (8b)		$1.52 \cdot 10^{-3}$	а	7
F ₁₆ CuPc (9)		3.10-3	а	8
a Not available				

Figure S1. Cyclic voltammograms of **2** recorded at 298 K at different scan rates in a DMF degassed solution, containing 0.1 M Bu₄NPF₆ as supporting electrolyte (V vs F_c/F_c^+).

Figure S2. Cyclic voltammograms of **2** recorded at 298 K at different scan rates in a DMF degassed solution, containing 0.1 M Bu₄NPF₆ as supporting electrolyte (V vs F_c/F_c^+).

Figure S3. Cyclic voltammograms of **2** recorded at 298 K at different scan rates in a DMF degassed solution, containing 0.1 M Bu₄NPF₆ as supporting electrolyte (V vs F_c/F_c^+).

Figure S4. Cyclic voltammetry of **2** measured at the Pt electrode in a THF degassed solution containing 0.1 mol·dm⁻³ Bu₄NPF₆ as supporting electrolyte (V vs F_c/F_c^+).

Figure S5. Cyclic voltammetry of **2** measured at the Pt electrode in a CH₂Cl₂ degassed solution containing 0.1 mol·dm⁻³ Bu₄NPF₆ as supporting electrolyte (V *vs* F_c/F_c^+).

Figure S6. Gas phase optimized geometries of 1H, 2 and 2H.

Chart 2S. Structural formula of **1H** (M = Ni, X = H), **2** (M = Pt, X = F) and **2H** (M = Pt, X = H) with atom labels.

	$\frac{1}{2(X = F)}$		2H (X = H)	
Atoms	HOMO (%)	LUMO (%)	HOMO (%)	LUMO (%)
N1, N2, N15, N16	36	42	39	44
C3, C4, C9, C10	29	9	31	8
C5, C8, C11, C14	4	9	7	11
C6, C7, C12, C13	21	11	21	12
X21, X24, X25, X28	1	1	0	0
X22, X23, X26, X27	6	2	0	0
Pt	3	25	2	25
H17, H18, H19, H20	0	1	0	0

Table S2. Comparison of calculated atomic contributions to HOMO and LUMO orbitals of complexes 2 and 2H in gas-phase.^{*a*}

^{*a*} Calculated by DFT calculations at B3LYP/6-311+G(d,p) level of theory.

Table S3. Comparison of calculated atomic percentage contributions to HOMO and LUMO orbitals of complexes **1H**, **2** and **2H** in CH_2Cl_2 .^{*a*}

	$\mathbf{1H}(\mathbf{M}=\mathbf{N}$	Ni; X = H;)	2 (M = H	Pt, X = F)	2H (M =	Pt, X = H)
Atoms	номо	LUMO	номо	LUMO	номо	LUMO
N ₁ , N ₂ , N ₁₅ , N ₁₆	38	46	37	42	38	43
C ₃ , C ₄ , C ₉ , C ₁₀	31	12	28	8	31	9
C ₅ , C ₈ , C ₁₁ , C ₁₄	8	13	5	10	6	11
C ₆ , C ₇ , C ₁₂ , C ₁₃	22	15	20	11	21	12
X ₂₁ , X ₂₄ , X ₂₅ , X ₂₈	0	0	1	1	0	0
X ₂₂ , X ₂₃ , X ₂₆ , X ₂₇	0	0	5	2	0	0
Μ	2	12	3	25	4	25
$H_{17}, H_{18}, H_{19}, H_{20}$	0	0	1	1	0	0

^{*a*} Calculated by DFT calculations at B3LYP/6-311+G(d,p) level of theory.

Gas phase	2	2H
LUMO+4	-0.763	-0.116
LUMO+3	-0.983	-0.180
LUMO+2	-1.208	-0.308
LUMO+1	-1.249	-0.355
LUMO	-4.105	-3.130
НОМО	-5.872	-4.893
HOMO-1	-6.537	-5.651
HOMO-2	-7.077	-6.350
HOMO-3	-7.843	-6.901
HOMO-4	-8.077	-7.187
CH ₂ Cl ₂	2	2H
CH ₂ Cl ₂ LUMO+4	2 -0.528	2H -0,159
CH ₂ Cl ₂ LUMO+4 LUMO+3	2 -0.528 -0.868	2H -0,159 -0,167
CH ₂ Cl ₂ LUMO+4 LUMO+3 LUMO+2	2 -0.528 -0.868 -0.879	2H -0,159 -0,167 -0,256
CH ₂ Cl ₂ LUMO+4 LUMO+3 LUMO+2 LUMO+1	2 -0.528 -0.868 -0.879 -1.038	2H -0,159 -0,167 -0,256 -0,417
CH ₂ Cl ₂ LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO	2 -0.528 -0.868 -0.879 -1.038 - 3.804	2H -0,159 -0,167 -0,256 -0,417 -3,239
CH2Cl2 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO	2 -0.528 -0.868 -0.879 -1.038 - 3.804 - 5.602	2H 0,159 0,167 0,256 0,417 3,239 5,022
CH2Cl2 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1	2 -0.528 -0.868 -0.879 -1.038 -3.804 -5.602 -6.257	2H -0,159 -0,167 -0,256 -0,417 -3,239 -5,022 -5,759
CH2Cl2 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2	2 -0.528 -0.868 -0.879 -1.038 -3.804 -5.602 -6.257 -6.848	2H -0,159 -0,167 -0,256 -0,417 -3,239 -5,022 -5,759 -6,458
CH2Cl2 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2 HOMO-3	2 -0.528 -0.868 -0.879 -1.038 -3.804 -5.602 -6.257 -6.848 -7.425	2H -0,159 -0,167 -0,256 -0,417 -3,239 -5,022 -5,759 -6,458 -7,011

Table S4. Calculated frontier orbitals' energies in the gas phase and CH_2Cl_2 simulated solution for the complexes **2** and **2H**.^{*a*}

^{*a*} Calculated by DFT calculations at B3LYP/6-311+G(d,p) level of theory.

Table S5. HOMO-LUMO gaps for complexes 1H, 2H and 2.

	1H	2H	2
Exp. ^a	1.01 eV	1.15 eV	1.21 eV
Gas phase ^b	1.54 eV	1.76 eV	1.77 eV
CH ₂ Cl ₂ ^b	1.56 eV	1.78 eV	1.80 eV

^{*a*} Estimated from electrochemical data; ^{*b*} calculated by DFT calculations at B3LYP/6-311+G(d,p) level of theory.

Figure S7. FOs of **1H** calculated by DFT methods at B3LYP/6-311+G(d,p) level of theory and plotted with a contour value of 0.040.

	Gas phase	CH ₂ Cl ₂
LUMO+4	0.005	-0.105
LUMO+3	-0.232	-0.278
LUMO+2	-0.320	-0.350
LUMO+1	-1.202	-1.298
LUMO	-3.257	-3.379
НОМО	-4.796	-4.940
HOMO-1	-5.870	-5.993
HOMO-2	-6.220	-6.339
HOMO-3	-6.839	-6.989
HOMO-4	-7.111	-7.250

Table S6. Calculated frontier orbitals' energies in the gas phase for complex **1H**.^{*a*}

^{*a*} Calculated by DFT calculations at B3LYP/6-311+G(d,p) level of theory.

Figure S8. Energy levels diagram for **2** and **2H** complexes, calculated in gas phase and CH_2Cl_2 at B3LYP/6-311+G(d,p) level of theory

Figure S9. Comparison between the experimental and calculated electronic spectra of 2, which were measured in CH_2Cl_2 solution and calculated by TD-DFT methods in the same solvent, respectively.

Figure S10. Comparison between the TD-DFT calculated electronic spectra of 1H, 2 and 2H, in both gas phase and in CH_2Cl_2 .

Figure S11. Comparison between the XRD patterns of two different samples of 2.

Figure S12. Comparison between the XRD patterns of 1H and 2H simulated from single crystal data and the experimental one of 2.

Figure S13. Transfer characteristics of 2 measured on $2 \times 2 \mu m$ substrates.

References

- T. Taguchi, H. Wada, T. Kambayashi, B. Noda, M. Goto, T. Mori, K. Ishikawa and H. Takezoe, *Phys. Chem. Lett.*, **421**, 395 (2006).
- J.-Y. Cho, B. Domercq, S. C. Jones, J. Yu, X. Zhang, Z. An, M. Bishop, S. Barlow, S. R. Marder and B. Kippelen, *J. Mater. Chem.*, 17, 2642 (2007).
- T. D. Anthopoulos, S. Setayesh, E. Smits, M. Cölle, E. Cantatore, B. de Boer, P. W. M. Blom and D. M. de Leeuw, *Adv. Mater.*, 18, 1900 (2006).
- 4. L. Qu, Y. Guo, H. Luo, C. Zhong, G. Yu, Y. Liu and J. Qin, Chem. Commun., 48, 9965 (2012).
- 5. T. D. Anthopoulos, G. C. Anyfantis, G. C. Papavassiliou, and D. M. de Leeuw, *Appl. Phys. Lett.*, **90**, 122105 (2007).
- 6. K.-I. Sakai, T. Hasegawa, M. Ichikawa, Y. Taniguchi, *Chem. Lett.*, 35, 302 (2006).
- Y. Aydogdu, F. Yakuphanoglu, A. Aydogdu, E. Tas, A. Cukurovali, *Mater. Lett.* 57 (2003) 3755– 3760
- 8. Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc., 120, 207 (1998).