Luminescent Closed Shell Nickel(II) Pyridyl-azo-oximates and the Open Shell Anion Radical Congener: Molecular and Electronic Structure, Ligand Redox and Biological Activity

Shuvam Pramanik, ${ }^{a}$ Suhana Dutta, ${ }^{b}$ Sima Roy, ${ }^{a}$ Soumitra Dinda, ${ }^{, a b}$ Tapas Ghorui, ${ }^{a}$ Arup Kumar Mitra, ${ }^{b}$ Kausikisankar Pramanik*a and Sanjib Ganguly*b
${ }^{a}$ Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
E-mail: kpramanik@hotmail.com, Tel: +9133 24572781
${ }^{b}$ Department of Chemistry, St. Xavier's College, Kolkata - 700016, India.
E-mail:icsgxav@gmail.com Tel: +9133 22551266

Experimental details

Physical measurements

${ }^{1} \mathrm{H}$ NMR spectra were measured on a Bruker FT 300 MHz spectrometer. Elemental analyses (C, H, N) were performed on a PerkinElmer 2400 series II analyzer. The electro-analytical instrument, BASi Epsilon-EC for cyclic voltammetric experiments in acetonitrile solutions containing 0.2 M tetrabutylammonium hexafluorophosphate as supporting electrolyte, was used. The BASi platinum working electrode, platinum auxiliary electrode, and $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode were used for the measurements. The electronic spectra in dichloromethane solution were obtained using a Perkin-Elmer LAMDA 25 spectrophotometer with a solute concentration of about $10^{-5} \mathrm{M}$. Emission spectra were recorded on Horiba FluoroMax-4 spectrometer in deaerated dichloromethane solutions at room temperature. Emission quantum yields of the complexes were determined in deaerated solutions of the complexes by a relative method using 2-aminopyridine in $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ as the standard. ${ }^{1}$ The emission quantum yield $\left(\Phi_{\mathrm{r}}\right)$ and radiative $\left(k_{\mathrm{r}}\right)$ and nonradiative (k_{nr}) decay rate constants for complexes was calculated by the equations given below: ${ }^{2}$

$$
\begin{equation*}
\Phi_{r}=\Phi_{s t d} \frac{A_{s t d} I_{r} \eta_{r}^{2}}{A_{r} I_{s t d} \eta_{s t d}^{2}} \tag{1}
\end{equation*}
$$

$k_{n r}=\frac{1-\Phi}{\tau}$
where Φ_{r} and $\Phi_{\text {std }}$ are the quantum yields of unknown and standard samples $\left(\Phi_{\text {std }}=0.60\right.$ for 2Aminopyridine), A_{r} and $A_{\text {std }}$ are the solution absorbance at the excitation wavelength (λ_{ex}), I_{r} and $I_{\text {std }}$ are the integrated emission intensities, and η_{r} and $\eta_{\text {std }}$ are the refractive indices of the solvents. For all luminescence measurements excitation and emission slit widths of 2 nm was used. Quantum yields of complexes were determined at $25^{\circ} \mathrm{C}$ in freeze-pump-thaw degassed solutions of dichloromethane. Timecorrelated single-photon counting (TCSPC) measurements were carried out for the luminescence decay of complexes in dichloromethane. For TCSPC measurement, the photoexcitation was made at 300 nm for ligand $\mathbf{1}$ and 330 nm for the complexes $\mathbf{2}$ and $\mathbf{3}$ using a picosecond diode laser (IBH Nanoled-07) in an

IBH Fluorocube apparatus. The fluorescence decay data were collected on a Hamamatsu MCP photomultiplier (R3809) and were analyzed by using IBH DAS6 software. Electron paramagnetic resonance (EPR) spectra were recorded in standard quartz EPR tubes using JEOL JES-FA200 X-band spectrometer.

Crystallographic Studies

X-ray intensity data for compounds 2b was measured at 298(2) K on a Bruker AXS SMART APEX CCD diffractometer Mo $K \alpha(\lambda=0.71073 \AA)$. Metal atoms were located by direct methods, and the rest of the non-hydrogen atoms emerged from successive Fourier synthesis. The structures were refined by full-matrix least-squares procedures on F^{2}. The hydrogen atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. Calculations were performed using the SHELXTL V 6.14 program package. ${ }^{3}$ Thermal ellipsoids were drawn at the 50% probability level. Molecular structure plots were drawn using the Oak Ridge thermal ellipsoid plot ORTEP. ${ }^{4}$ Hydrogen atoms were kept fixed using the riding model during refinement for both 2 and $\mathbf{3}$.

Computational Study

The molecular geometry of the singlet ground state $\left(S_{0}\right)$ and the first excited triplet state $\left(T_{1}\right)$ of the synthesized complexes 2 and 3 have been calculated by DFT method using the (U)B3LYP ${ }^{5}$ hybrid functional approach incorporated in GAUSSIAN 09 program package. ${ }^{6}$ The geometries of the complexes were fully optimized in gas phase without imposing any symmetry constraints. The nature of all the stationary points was checked by computing vibrational frequencies, and all the species were found to be true potential energy minima, as no imaginary frequency were obtained (NImag=0). The single crystal Xray coordinates have been used as the initial input in all calculations for $\mathbf{2 b}$. On the basis of the optimized ground and excited state geometries, the absorption and emission spectra properties in acetonitrile $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ media were calculated by the time-dependent density functional theory (TD-DFT) ${ }^{7}$ approach associated with the conductor-like polarizable continuum model (CPCM). ${ }^{8}$ The results of the TD calculations were qualitatively similar to the observed spectra. The TD-DFT approach is now well-known as a rigorous formalism for the treatment of electronic excitation energies within the DFT framework for calculating spectral properties of many transition metal complexes. ${ }^{9}$ Hence TD-DFT had been shown to provide a reasonable spectral feature for the compounds under investigation. Moreover, to get an insight about the ground state geometry, electronic structure and nature of FMOs of $\mathbf{3}$, it was optimized by assuming an $S=3 / 2$ spin state.

The nickel atom was described by a double-弓basis set with the effective core potential of Hay and Wadt (LANL2DZ) ${ }^{10}$ and the modified $6-31 \mathrm{G}$ basis set ${ }^{11}$ was used for the other elements present in the complexes to optimize the geometries. The calculated electronic density plots for frontier molecular orbitals were prepared by using the GaussView 5.0 software. GaussSum program, version 2.2^{12} was used to calculate the molecular orbital contributions from groups or atoms.

Antimicrobial activity: Determination of MIC

The pyridyl-azo-oxime ligand and its synthesized nickel chelate along as well as the starting nickel acetate were evaluated for their antibacterial activity against Staphylococcus aureusMTCC 3160, Streptococcus epidermidisMTCC 9041 (as Gram-positive bacteria) E.coliMTCC 443 and Pseudomonas aeroginosa, MTCC 741 (as Gram-negative bacteria) by using turbidimetric assay method ${ }^{13}$. To determine the minimum inhibitory concentration (MIC). Stock concentration of each test compound was 1 mM and was further diluted within the range of $1.56-50 \mu \mathrm{M}$. The lowest concentration of the compound that completely inhibits bacterial growth (no turbidity) in comparison to control was regarded as MIC. ${ }^{14}$ The result of MIC from turbidity method was further confirmed by Agar cup plate method. ${ }^{15}$

Study of antibacterial mechanism of action:

Determination of bacterial motility: Bacterial motility was observed by hanging drop method using phase contrast microscope. ${ }^{13}$

Preparation of bacterial lysate: The bacterial cells were incubated with IC_{50} dose of the test compounds for overnight at $37^{\circ} \mathrm{C}$. Cell lysis buffer was added to the pellet and after sonication tubes were centrifuged at 10000 rpm for 10 minutes at $4^{\circ} \mathrm{C}$. Supernatant was collected stored at $-20^{\circ} \mathrm{C}$ for biochemical analysis. The protein in the supernatant was estimated by the Bradford assay.

Measurement of enzymatic antioxidants: Catalase (CAT) activity was determined using a reaction mixture containing $200 \mu \mathrm{~L}$ of $40 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$ in a 50 mM phosphate buffer (pH 7.0) and 0.1 mL of bacterial lysate in a total volume of 3 ml . The absorbance of $\mathrm{H}_{2} \mathrm{O}_{2}$ was measured at 240 nm and the activity of enzyme was expressed in units $/ \mathrm{mL}$. ${ }^{16}$

Superoxide dismutase(SOD): The rate of pyrogallol auto-oxidation was measured at 470 nm every 30 seconds for 5 minutes by a spectrophotometer. The activity of SOD was expressed as unit/mg protein (1 unit was the amount of enzyme that was utilized to inhibit 50% of auto-oxidation of pyrrogallol $/ \mathrm{min}$). ${ }^{17}$

Peroxidase (Perx) activity: was determined according to Mohammadiet al., 2015. ${ }^{18}$
Measurement of non-enzymatic antioxidant:Glutathione (GSH): was measured according to Khan et al., 2015. The level of GSH was expressed as $\mu \mathrm{M} .{ }^{19}$

Measurement of lipid damage: Lipid damage was measured in terms of malonaldehyde (MDA) in the bacterial lysate using the modified method of Beuge and Aust. ${ }^{20}$

Measurement of protein damage: To obtain the degree of protein carbonylation, derivatization was done with 2, 4 dinitrophenyl-hydrazine DNPH. The carbonyl concentration was calculated from the specific absorption at 370 nm (relative to the reagent blank), the extinction coefficient of the protein-hydrazone complex being $22,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ and expressed as nmoles of carbonyl groups $/ \mathrm{mg}$ protein. ${ }^{21}$

Measurement of Ni-uptake: Nickel uptake by selected test organisms was measured by atomic absorption spectroscopy following the protocol of Ronchini et al., 2015. ${ }^{22}$

In vitro radical scavenging assay:

Radical scavenging activity was measured by a decrease in absorbance at 517 nm of DPPH (2,2-Diphenyl-1-Picrylhydrazyl) solution. To determine RSC of the metal complex and its respective ligand and inorganic nickel acetate, 1 ml of $\operatorname{DPPH}(0.1 \mathrm{mM})$ solution was mixed with 2 ml of each test compound in methanol of varying concentration ($1-15 \mathrm{mg} / \mathrm{ml}$)and kept for 20 minutes incubation in dark. After 20 minutes absorbance was measured at 517 nm . Decrease in the absorbance of the DPPH solution indicates an increase of the DPPH antioxidant activity and percentage of Radical Scavenging Activity (\% RSC) was calculated by $\left(\mathrm{A}_{0}-\mathrm{A}_{5}\right) / \mathrm{A}_{0} \times 100\left[\mathrm{~A}_{0}=\right.$ DPPH solution without the sample, $\mathrm{A}_{\mathrm{s}}=\mathrm{DPPH}$ solution with the sample].

Statistical analysis: All experiments were carried out in triplicate. Data obtained was analyzed by oneway analysis of variance, and mean was compared by Duncan's tests. Differences were considered significant at $P<0.05$.

References

1 R. Rusakowicz, A. C. Testa, J. Phys. Chem., 1968,72, 2680-2681.
2 J. V. Houten, R. J. Watts, J. Am. Chem. Soc., 1976, 98, 4853-4858.
3 G. M. Sheldrick, SHELXTL, v. 6.14; Bruker AXS Inc.: Madison, WI, 2003.

4 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.

5 C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 1998, 37, 785-789.
6 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 (Revision A.01), Gaussian, Inc., Wallingford CT, 2009.

7 (a) J. Autschbach, T. Ziegler, S. J. A. Gisbergen and E. J. Baerends, J. Chem. Phys., 2002, 116, 6930-6940; (b) K. L. Bak, P. Jørgensen, T. Helgaker, K. Rund and H. J. A. Jenson, J. Chem. Phys., 1993, 98, 8873-8887; (c) T. Helgaker and P. Jørgensen, J. Chem. Phys., 1991, 95, 2595-2601; (d) E. K. U. Gross and W. Kohn, Adv. Quantum Chem., 1990, 21, 255-291.

8 (a) M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681; (b) M. Cossi and V. Barone, J. Chem. Phys., 2001, 115, 4708-471; (c) V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995-2001.

9 (a) T. Liu, H. X. Zhang and B. H. Xia, J. Phys. Chem. A, 2007, 111, 8724-8730; (b) A. Albertino, C. Garino, S. Ghiani, R. Gobetto, C. Nervi, L. Salassa, E. Rosenverg, A. Sharmin, G. Viscardi, R. Buscaino, G. Cross and M. Milanesio, J. Organomet. Chem., 2007, 692, 1377-1391; (c) X. Zhou, H. X. Zhang, Q. J. Pan, B. H. Xia and A. C. Tang, J. Phys. Chem. A, 2005, 109, 8809-8818; (d) X. Zhou, A. M. Ren and J. K. Feng, J. Organomet. Chem., 2005, 690, 338-347.

10 (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310; (b) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283

11 (a) M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, J. Am. Chem. Soc., 1982, 104, 2797-2803; (b) J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc., 1980, 102, 939947.

12 N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comp. Chem., 2008, 29, 839-845.
13. L. Xia, A. Idhayadhulla, Y. R. Lee, Y.-J. Wee and S. H. Kim, Eur. J. Med. Chem., 2014, 86, 605612.
14. R.-F. Shang, G.-H. Wang, X.-M. Xu, S.-J. Liu, C. Zhang, Y.-P. Yi, J.-P. Liang and Y. Liu, Molecules, 2014, 19, 19050-19065.
15. A. Mitra and K. Sarkar, Manual of Modern Microbiology, 1st Ed, Himalaya Publishing House, India, 2013.
16. M. Masoud, F. Ebrahimi and D. Minai-Tehrani, J Mol Microbiol Biotechnol., 2014, 24, 196-201.
17. X.-B. Fu, Z.-H. Lin, H.-F. Liu and X.-Y. Le,. Spectrochim. Acta A, 2014, 122, 22-33.
18. P. Jahangoshaei, L. Hassani, F. Mohammadi, A. Hamidi and K. Mohammadi, J. Biol. Inorg. Chem., 2015, 20, 1135-1146.
19. Z, Khan, M .A. Nisar, S. Z. Hussain, M. N. Arshad and A. Rehman, Appl. Microbiol. Biotechnol., 2015, 99, 10745-10757.
20. C. C. Otto, J. L. Koehl, D. Solanky and S. E. Haydel, PLoS One, 2014; 9, e115172.
21. C. Pimentel, S. M. Caetano, R. Menezes, I. Figueira, C. N. Santos, R. B. Ferreira, M. A. Santos and C. Rodrigues-Pousada, Biochim Biophys Acta, 2014, 1840, 1977-1986.
22. M. Ronchini, L. Cherchi, S. Cantamessa, M. Lanfranchi, A. Vianelli, P. Gerola, G. Berta and A. Fumagalli, Environ. Sci Pollut Res Int., 2015, 22, 7600-7611.

Fig. S1 Perpendicular disposition of the two coordinated ligand around $\mathrm{Ni}(\mathrm{II})$ in $\mathbf{2 b}$

Table S1 Summarized Crystallographic Data for 2b

	$\mathbf{2 b}$
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Ni}$
fw	537.20
T / K	$298(2)$
Cryst syst	Triclinic
Space group	$P \overline{1}$
a / \AA	$7.2755(3)$
b / \AA	$12.9036(5)$
c / \AA	$13.5575(5)$
$\alpha /$ deg	$100.275(2)$
$\beta /$ deg	$92.818(2)$
$\gamma /$ deg	$96.958(2)$
V / \AA^{3}	$1239.39(8)$
Z	2
$D_{c} / \mathrm{mgm}^{-3}$	1.418
μ / mm^{-1}	0.820
$F(000)$	556
cryst size $/ \mathrm{mm}^{3}$	$0.18 \times 0.15 \times 0.11$
$\theta /$ deg	$1.53-28.8$
measured reflns	21940
unique reflns, $R_{\text {int }}$	$6308,0.0227$
GOF on F^{2}	0.890
$\mathrm{R} 1,{ }_{\text {wR }}{ }^{2}[I>2 \sigma(I)]$	$0.0344,0.1033$
R 1, wR2(all data $)$	$0.0463,0.1132$

${ }^{a} \mathrm{R} 1=\Sigma\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$.
${ }^{b} \mathrm{WR} 2=\left[\Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma \mathrm{W}\left(\mathrm{F}_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$.

Fig. S2 Partial molecular orbital diagram and isodensity surface plots of some selected FMOs for complexes 2. The arrows are intended to highlight the HOMO-LUMO energy gaps. All the DFT energy values are given in eV .

Table S2 Frontier Molecular Orbital Composition (\%) in the Ground State for $\mathbf{2}(\boldsymbol{S}=\mathbf{1})$

Orbital	$\alpha-\mathrm{MO}$	Energy(eV)	Contribution (\%)				
			Ni	Ligand			
				Azo	Py	Oxime	Tolyl
141	L+5	-0.93	0	2	21	28	48
140	L+4	-0.96	1	3	28	25	43
139	L+3	-1.51	0	2	95	3	0
138	L+2	-1.58	1	2	89	6	2
137	L+1	-3.17	3	35	27	35	1
136	LUMO	-3.18	2	34	27	36	1
135	SOMO	-5.65	0	16	13	32	40
134	H-1	-5.71	1	15	12	30	42
133	H-2	-5.95	10	1	4	83	1
132	H-3	-5.99	12	32	3	50	3
131	H-4	-6.77	1	1	0	0	98
130	H-5	-6.77	0	0	0	0	99

Orbital	β-MO	Energy(eV)	Contribution (\%)				
			Ni	Ligand			
				Azo	Py	Oxime	Tolyl
139	L+5	-1.31	67	15	4	11	4
138	L+4	-1.5	2	2	93	3	0
137	L+3	-1.57	2	2	89	5	2
136	L+2	-1.59	76	1	13	10	0
135	L+1	-3.09	3	33	25	37	1
134	LUMO	-3.11	3	33	26	37	1
133	SOMO	-5.64	0	16	13	31	39
132	H-1	-5.69	2	16	13	29	41
131	H-2	-6.29	16	2	2	78	2
130	H-3	-6.31	19	0	4	75	1
129	H-4	-6.77	0	0	0	0	99
128	H-5	-6.77	0	0	0	0	99

Table S3 Frontier Molecular Orbital Composition (\%) in the Ground State for $\mathbf{3}(\boldsymbol{S}=\mathbf{3 / 2})$

Orbital	$\alpha-\mathrm{MO}$	Energy(eV)	Contribution (\%)				
			Ni	Ligand			
				Azo	Py	Oxime	Tolyl
142	L+5	2.03	16	5	0	0	97
141	L+4	1.77	1	3	37	10	50
140	L+3	1.73	0	3	27	11	58
139	L+2	1.61	0	1	76	10	13
138	L+1	1.49	1	2	64	13	21
137	LUMO	-0.29	2	34	26	37	1
136	SOMO	-1.03	2	34	27	35	1
135	H-1	-2.55	9	5	7	75	4
134	H-2	-2.59	13	32	6	46	4
133	H-3	-2.73	2	14	16	49	19
132	H-4	-2.82	3	18	17	39	22
131	H-5	-3.56	32	19	9	34	6
Orbital	β-MO	Energy(eV)	Contribution (\%)				
				Ligand			
			Ni	Azo	Py	Oxime	Tolyl
139	L+5	1.89	12	2	12	15	60
138	L+4	1.87	18	1	12	16	53
137	L+3	1.7	1	2	95	1	1
136	L+2	1.62	1	2	81	9	6
135	L+1	0.45	3	31	30	33	3
134	LUMO	0.4	3	31	30	33	3
133	SOMO	-2.47	0	20	20	39	21
132	H-1	-2.54	3	19	19	38	22
131	H-2	-2.86	17	1	1	80	1
130	H-3	-2.89	19	0	3	77	0
129	H-4	-3.85	16	66	0	15	3
128	H-5	-4.17	13	15	25	0	46

Figure S3 Experimental absorption spectra of 3 in dichloromethane solution.

Table S4 Main optical transition at the TD-DFT/B3LYP Level for the complex $\mathbf{2}$ with composition in terms of molecular orbital contribution of the transition, Computed Vertical excitation energies, and oscillator strength in dichloromethane

Transition	CI	Composition	Oscillato		
			$\begin{gathered} E \\ (\mathrm{eV}) \end{gathered}$	strength	$\begin{aligned} & \lambda_{\text {theo }} \\ & (\mathbf{n m}) \end{aligned}$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{16}$	$\begin{aligned} & 0.49638 \\ & 0.49263 \end{aligned}$	$\begin{aligned} & \mathrm{H}-1(\mathrm{~A}) \rightarrow \mathrm{L}+1(\mathrm{~A}) \\ & (37 \%) \\ & \mathrm{H}-1(\mathrm{~B}) \rightarrow \mathrm{L}+1(\mathrm{~B}) \\ & (35 \%) \end{aligned}$	$\begin{aligned} & 2.302 \\ & 8 \end{aligned}$	0.1688	$\begin{aligned} & 538.4 \\ & 0 \end{aligned}$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{17}$	$\begin{aligned} & 0.59242 \\ & 0.48666 \end{aligned}$	$\begin{aligned} & \mathrm{H}-1(\mathrm{~A}) \rightarrow \mathrm{L}(\mathrm{~A})(52 \%) \\ & \mathrm{H}-1(\mathrm{~B}) \rightarrow \mathrm{L}(\mathrm{~B})(46 \%) \end{aligned}$	$\begin{aligned} & 2.309 \\ & 3 \end{aligned}$	0.2192	$\begin{aligned} & 536.9 \\ & 0 \end{aligned}$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{9}$	0.63480	H-6 ${ }^{\text {L }}$ (81\%)	2.813	0.0430	$\begin{aligned} & 440.6 \\ & 6 \end{aligned}$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{59}$	$\begin{aligned} & -0.47848 \\ & 0.45284 \end{aligned}$	$\begin{aligned} & \mathrm{H}(\mathrm{~A}) \rightarrow \mathrm{L}+2(\mathrm{~A})(32 \%) \\ & \mathrm{H}(\mathrm{~B}) \rightarrow \mathrm{L}+3(\mathrm{~B})(31 \%) \end{aligned}$	$\begin{aligned} & 3.793 \\ & 1 \end{aligned}$	0.3935	$\begin{aligned} & 326.8 \\ & 7 \end{aligned}$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{86}$	$\begin{aligned} & 0.52484 \\ & 0.50886 \end{aligned}$	$\begin{aligned} & \mathrm{H}(\mathrm{~A}) \rightarrow \mathrm{L}+4(\mathrm{~A})(28 \%) \\ & \mathrm{H}(\mathrm{~B}) \rightarrow \mathrm{L}+6(\mathrm{~B})(26 \%) \end{aligned}$	$\begin{aligned} & 4.264 \\ & 8 \end{aligned}$	0.1346	$\begin{aligned} & 290.7 \\ & 1 \end{aligned}$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{87}$	$\begin{aligned} & 0.60786 \\ & -0.55434 \end{aligned}$	$\begin{aligned} & \mathrm{H}(\mathrm{~A}) \rightarrow \mathrm{L}+5(\mathrm{~A})(37 \%) \\ & \mathrm{H}(\mathrm{~B}) \rightarrow \mathrm{L}+7(\mathrm{~B})(31 \%) \end{aligned}$	$\begin{aligned} & 4.269 \\ & 7 \end{aligned}$	0.2778	$\begin{aligned} & 290.3 \\ & 8 \end{aligned}$

$\begin{aligned} & \lambda_{\text {expt }} \\ & (\mathrm{nm}) \end{aligned}$		Hole	Electron	
$\begin{aligned} & 509 \\ & \mathrm{~nm} \end{aligned}$	S_{17}			
	$\mathrm{w}=0.70$			
	2.3093 (0.2192)			
	536.90 nm			
	ILCT			
$\begin{aligned} & 275 \\ & \mathrm{~nm} \end{aligned}$	S_{86}			
	$\mathrm{w}=0.55$			
	4. 2648 (0.1346)			
	290.71			
	ILCT/MLCT			

Fig. S4 Natural transition orbitals (NTOs) for complex $\mathbf{2}$ illustrating the nature of singlet excited states in the absorption bands in the range $250-600 \mathrm{~nm}$. For each state, the respective number of the state, transition energy (eV), and the oscillator strength (in parentheses) are listed. Shown are only occupied (holes) and unoccupied (electrons) NTO pairs that contribute more than 55% to each excited state.

Table S5 Main optical transition at the TD-DFT/B3LYP Level for the complex $\mathbf{3}$ with composition in terms of molecular orbital contribution of the transition, Computed Vertical excitation energies, and oscillator strength in dichloromethane

Transition	CI	Composition	\mathbf{E} $(\mathbf{e V})$	Oscillator strength (f)	$\boldsymbol{\lambda}_{\text {theo }}$ $(\mathbf{n m})$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{18}$	0.69876	$\mathrm{H}(\mathrm{A}) \rightarrow \mathrm{L}+4(\mathrm{~A})(49 \%)$	2.4882	0.1258	498.29
$\mathrm{~S}_{0} \rightarrow \mathrm{~S}_{19}$	0.58957	$\mathrm{H}(\mathrm{A}) \rightarrow \mathrm{L}+3(\mathrm{~A})(35 \%)$	2.5130	0.1359	493.37
$\mathrm{~S}_{0} \rightarrow \mathrm{~S}_{91}$	0.49849	$\mathrm{H}(\mathrm{B}) \rightarrow \mathrm{L}+6(\mathrm{~B})(25 \%)$	4.1353	0.0419	299.82

$\lambda_{\text {expt }}$	Hole	Electron
$(\mathbf{n m})$		

509	$\mathrm{w}=0.87$
nm	$2.4882(0.1258)$
	498.29 nm

ILCT/LLCT
S_{19}
$\mathrm{w}=0.70$
2.5130 (0.1359)
493.37 nm
ILCT/LLCT

$\pi($ py + azo + oxime $) \rightarrow \pi^{*}(p y+$ tolyl
$+{ }^{+} \mathrm{S}_{91}+$ oxime)
275
$\mathrm{w}=0.49$
nm
4. 1353 (0.0419)
299.82

ILCT/LLCT

Fig. S5 Natural transition orbitals (NTOs) for complex $\mathbf{3}$ illustrating the nature of singlet excited states in the absorption bands in the range $250-600 \mathrm{~nm}$. For each state, the respective number of the state, transition energy (eV), and the oscillator strength (in parentheses) are listed. Shown are only occupied (holes) and unoccupied (electrons) NTO pairs that contribute more than 50% to each excited state.

Fig. S6 Changes in the time-resolved photoluminescence decay of complexes $\mathbf{2}$ (left) and $\mathbf{3}$ (right) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature obtained with 330 nm excitation. The emission at 409 and 410 nm was monitored for complex $\mathbf{2}$ and $\mathbf{3}$ respectively.

Fig. S7 Agar cup plate assay showing ZOI. 1 indicates treatement with IC_{50} of $\mathrm{Ni}(\mathrm{II})$ complex, 2 indicates IC_{50} dose of free ligand 3 indicates treatment with IC_{50} of nickel acetate. Tet= tetracyclin, strp $=$ streptomycin.

Table S6 Effect of IC_{50} dose of synthesized nickel azo-oxime complex, free ligand and nickel acetate on antioxidant enzymes of tested bacteria

	E.coli	P.aeruginosa	S.aureus	S.epidermidis
Catalase (U/mg protein)				
Cont	0.82 ± 0.05	0.39 ± 0.02	2.9 ± 0.03	1.5 ± 0.08
Nickel(II) complex, 2	$0.5 \pm 0.03^{* * *}$	$0.2 \pm 0.03^{* * *}$	$1.2 \pm 0.02^{* * *}$	$0.5 \pm 0.03^{* * *}$
Azo-oxime ligand, 1	$0.65 \pm 0.03^{* *}$	$0.36 \pm 0.05^{*}$	$2.1 \pm 0.03^{* *}$	$1.2 \pm 0.08^{* *}$
Nickel acetate	$0.60 \pm 0.03^{* *}$	$0.30 \pm 0.03^{* *}$	$2.5 \pm 0.03^{* *}$	$1.25 \pm 0.03^{* *}$
SOD (U/mg protein)	18.5 ± 0.73	13.56 ± 0.58	21.7 ± 0.9	15.6 ± 0.89
Cont	$7.2 \pm 0.6^{* * *}$	$6.6 \pm 0.95^{* * *}$	$9.5 \pm 1.1^{* * *}$	$8.4 \pm 0.6^{* * *}$
Nickel(II) complex, 2	$12.5 \pm 1.2^{* * *}$	$10.6 \pm 0.85^{* *}$	$12.5 \pm 1.2^{* * *}$	$10.2 \pm 1^{* * *}$
Azo-oxime ligand, 1	$11.2 \pm 1.2^{* * *}$	$10.1 \pm 0.6^{* * *}$	$14.5 \pm 1.0^{* * *}$	$11.2 \pm 0.9^{* * *}$
Nickel acetate				
Peroxidase(U/mg protein)				
Cont	0.88 ± 0.02	$0.48 \pm 0.01^{*}$	0.69 ± 0.03	0.5 ± 0.02
Nickel(II) complex, 2	$0.52 \pm 0.02^{* *}$	$0.24 \pm 0.03^{* *}$	$0.3 \pm 0.02^{* * *}$	$0.3 \pm 0.01^{* * *}$
Azo-oxime ligand, 1	$0.72 \pm 0.03^{* *}$	$0.41 \pm 0.5^{*}$	$0.55 \pm 0.03^{* *}$	$0.38 \pm 0.0^{*}$
Nickel acetate	$0.81 \pm 0.3^{*}$	$0.38 \pm 0.4^{*}$	$065 \pm 0.05^{*}$	$0.4 \pm 0.03^{*}$

All values are expressed as mean $\pm \mathrm{SD}\left(*\right.$ Indicates $\mathrm{p}<0.05$, ${ }^{* *}$ indicates $\mathrm{p}<0.01{ }^{* * *}$ indicates $\mathrm{P}<0.001$)

Fig. S8 Effect of IC_{50} dose of nickel complex 2, free ligand $\mathbf{1}$ and nickel acetate on lipid peroxidation level in all tested bacteria (All values expressed as mean \pm SD)

Fig. S9 Analysis of nickel uptake by tested organisms.

Table S7 Coordinates of optimized geometry 2b

Tag	Symbol	X	Y	Z
1	Ni	0.000259	0.054389	-0.00172
2	N	-0.21483	1.494874	-1.57453
3	C	0.693115	2.253779	-2.19978
4	H	1.716515	2.162294	-1.84477
5	C	0.368144	3.114255	-3.24754
6	H	1.141255	3.707772	-3.72433
7	C	-0.96849	3.181915	-3.65956
8	H	-1.26154	3.839173	-4.47375
9	C	-1.9191	2.395978	-3.01899
10	H	-2.96597	2.407187	-3.30277
11	C	-1.51012	1.551518	-1.97229
12	N	-2.48151	0.760852	-1.35195
13	N	-1.9845	0.010861	-0.42589
14	C	-2.71341	-0.85613	0.318634
15	C	-4.16625	-1.13209	0.261703
16	C	-5.02667	-0.57277	-0.70142
17	H	-4.63212	0.10021	-1.44911
18	C	-6.39087	-0.88114	-0.70456
19	H	-7.02671	-0.43302	-1.4657
20	C	-6.95379	-1.74631	0.238545
21	C	-6.0922	-2.30268	1.20001
22	H	-6.49317	-2.98165	1.950621
23	C	-4.73403	-2.00881	1.215419
24	H	-4.09548	-2.45859	1.966693
25	C	-8.42774	-2.07873	0.231997
26	H	-8.90317	-1.80836	1.183861
27	H	-8.59377	-3.15388	0.084117
28	H	-8.95431	-1.54691	-0.56775
29	N	-1.99642	-1.56131	1.243876
30	O	-0.74187	-1.36772	1.328441
31	N	0.214722	1.496528	1.56924
32	C	-0.69378	2.250864	2.199184
33	H	-1.71839	2.154612	1.849059
34	C	-0.36821	3.112297	3.245994
35	H	-1.14202	3.70195	3.726426
36	C	0.96984	3.185691	3.652517
37	H	1.263384	3.843424	4.466131
38	C	1.920995	2.403936	3.007618
39	H	2.968668	2.417912	3.288263
40	C	1.511294	1.55846	1.962035
41	N	2.483746	0.77253	1.337625
42	N	1.985925	0.016682	0.416662
43	C	2.714167	-0.85538	-0.32251
44	C	4.166152	-1.13492	-0.26063
45	C	5.057589	-0.43407	0.573178
46	H	4.686763	0.349156	1.218515
47	C	6.421329	-0.74419	0.580791

48	H	7.082019	-0.18217	1.238189
49	C	6.952567	-1.75366	-0.22764
50	C	6.059705	-2.45289	-1.05851
51	H	6.435607	-3.24755	-1.70067
52	C	4.702154	-2.1564	-1.07902
53	H	4.039399	-2.71537	-1.72916
54	C	8.424895	-2.09252	-0.21152
55	H	8.981166	-1.42739	0.457691
56	H	8.866429	-2.0069	-1.21285
57	H	8.593253	-3.12343	0.126731
58	N	1.996133	-1.56692	-1.24206
59	O	0.741675	-1.37303	-1.32719

Table S7 Coordinates of optimized geometry 3b

Tag	Symbol	X	Y	Z
1	Ni	0.003842	0.003566	-0.05716
2	N	-0.17077	1.784316	1.137557
3	C	0.766173	2.518094	1.750243
4	H	1.777893	2.120699	1.703003
5	C	0.494394	3.711702	2.412926
6	H	1.292388	4.263118	2.900552
7	C	-0.83801	4.169943	2.422384
8	H	-1.09578	5.101336	2.922321
9	C	-1.81784	3.429646	1.785339
10	H	-2.85544	3.747914	1.757147
11	C	-1.46655	2.218658	1.13597
12	N	-2.45258	1.504144	0.501855
13	N	-1.97361	0.447142	-0.12279
14	C	-2.73595	-0.42693	-0.81604
15	C	-4.20312	-0.39956	-1.02657
16	C	-5.04492	0.614345	-0.52903
17	H	-4.61178	1.425148	0.040012
18	C	-6.42478	0.583784	-0.76456
19	H	-7.04174	1.387653	-0.36394
20	C	-7.02749	-0.44323	-1.4965
21	C	-6.18705	-1.4543	-1.99545
22	H	-6.61723	-2.27194	-2.57375
23	C	-4.81495	-1.43705	-1.77067
24	H	-4.18941	-2.22793	-2.16825
25	C	-8.51892	-0.47524	-1.74547
26	H	-8.98373	-1.36943	-1.3068
27	H	-8.75002	-0.4892	-2.81962
28	H	-9.01346	0.401594	-1.31115
29	N	-2.07732	-1.48482	-1.37416
30	0	-0.79446	-1.5281	-1.24427
31	N	0.155603	-1.34705	1.610346
32	C	-0.79006	-1.86077	2.406182
33	H	-1.80031	-1.49842	2.227309
34	C	-0.52916	-2.79362	3.405607
35	H	-1.33413	-3.17084	4.028754
36	C	0.802586	-3.2234	3.571794
37	H	1.052685	-3.95587	4.336499
38	C	1.791271	-2.71138	2.751172
39	H	2.828665	-3.02003	2.83547
40	C	1.450993	-1.75771	1.757859
41	N	2.445655	-1.26892	0.949042
42	N	1.977652	-0.44396	0.033086
43	C	2.750033	0.180522	-0.88306
44	C	4.216022	0.07148	-1.07489
45	C	5.034399	-0.81371	-0.34646
46	H	4.584823	-1.44676	0.405643

47	C	6.412205	-0.88082	-0.58518
48	H	7.010793	-1.58053	-0.00263
49	C	7.035779	-0.08052	-1.54666
50	C	6.219347	0.804446	-2.27305
51	H	6.667033	1.445746	-3.03219
52	C	4.849178	0.881205	-2.04825
53	H	4.241337	1.568737	-2.62515
54	C	8.524147	-0.15811	-1.80424
55	H	9.004842	-0.88696	-1.14117
56	H	9.014922	0.811901	-1.64331
57	H	8.740651	-0.45798	-2.83913
58	N	2.104984	1.036365	-1.72838
59	O	0.821457	1.128956	-1.62264

