Organic Superbase Derived Ionic Liquids Based on the TFSI Anion: Synthesis, Characterization, and Electrochemical Properties

Zhi Wang, Zuopeng Li*, Yunhe Jin, Wei Liu[,] Linhai Jiang*, and Qinghua Zhang*

Fig. S1 ¹H NMR of [BuDBN][TFSI] in d₆-chloroform

Fig. S3 ¹H NMR of [EtDBN][TFSI] in d_6 -chloroform

Fig. S5 ¹H NMR of [PrDBN][TFSI] in d6 chloroform

-1 f1 (ppm) Ö

Fig. S7 ¹H NMR of [EtDBU][TFSI] in d₆-chloroform

Fig. S9 ¹H NMR of [PrDBU][TFSI]in d₆-chloroform

Fig. S10 ¹³C NMR of [PrDBU][TFSI]in d⁶-chloroform

3. The cyclic voltammetry scan of ionic liquids

Fig. S11 The electrochemical window of [EtDBN][TFSI] at GC/Ag/Pt

Fig. S12 The electrochemical window of [BuDBN][TFSI] at GC/Ag/Pt

Fig. S13 The electrochemical window of [PrDBN][TFSI] at GC/Ag/Pt

Fig. S14 The electrochemical window of [EtDBU][TFSI] at GC/Ag/Pt

Fig. S15 The electrochemical window of [PrDBU][TFSI]at GC/Ag/Pt

4. The Specific capacitance data

Name			Specific capacitance(F/g)
[PrDBU][TFSI]		5	65.25
	CV(mA/g)	10	42.66
		20	29.46
		50	14.39
		0.2	110.05
	GCP	0.5	57.01
		1	
		2	
[EtDBU][TFSI]	CV(mA/g)	5	54.35
		10	34.70
		20	23.37
		50	9.81
	GCP	0.2	99.17
		0.5	46.86
		1	
		2	
[PrDBN][TFSI]	CV(mA/g)	5	25.49
		10	19.59
		20	10.92
		50	4.61
	GCP	0.2	34.10
		0.5	
		1	
		2	
[EtDBN][TFSI]	CV(mA/g)	5	112.01
		10	101.60
		20	78.29
		50	46.71
		0.2	123.51
	GCP	0.5	98.94
		1	80.18
		2	50.18
[BuDBN][TFSI]	CV(mA/g)	5	79.89
		10	58.85
		20	44.27
		50	20.67
	GCP	0.2	92.33
		0.5	63.99
		1	36.12

Table S1 The specific capacitance of ILs