ELECTRONIC SUPPORTING INFORMATION (ESI)

High catalytic activity of bimetallic AgPd alloy supported on UiO-66

derived porous carbon for transfer hydrogenation of nitroarenes using

formic acid-formate as hydrogen source

Saisai Cheng, Ningzhao Shang, Xin Zhou, Cheng Feng*, Shutao Gao, Chun Wang*, Zhi Wang

College of Science, Hebei Agricultural University, Baoding 071001, China

Entry	FA (mmol)	Ammonium formate (mmol)	Time (min)	Conversion (%)	Selectivity (%)
1	4	0	12 h	15	86
2	0	4	2 h	99	>99
3	4	4	20	99	>99
4	4	8	15	99	>99
5 ^[b]	4	4	60	98	>99
6 ^[c]	4	4	3 h	87	93

Table S1 Reduction of nitrobenzene to aniline with different hydrogen source over $Ag_1Pd_9@NPC-UiO-66-800$ catalyst.^[a]

[a] Reaction conditions: nitrobenzene (1 mmol), Ag₁Pd₉@NPC-UiO-66-800 (1 mol%), methanol (5 mL), 25 °C. GC analysis using *n*-decane as an internal standard. [b] HCOONa. [c] HCOOK.

Entry	Catalyst	Hydrogen source	Temp (°C)	Time (h)	TOF[h ⁻¹] ^[a]	Ref
1	C-Pd-Fe ₃ O ₄	NaBH ₄	25	0.5	545	[1]
2	Au/TiO ₂ -EC	$10 \text{ atm } H_2$	90-120	2-7	53-279	[2]
3	ZIF-67-derived nanocomposites	NH ₃ BH ₃	25	1.5-4	1.00-2.61	[3]
4	Pd-Pt-Fe ₃ O ₄	NH ₃ BH ₃	25	5	188-1176	[4]
5	Fe-MIL-88A-C	N_2H_4 · H_2O	85	0.75-12	2-53	[5]
6	Ni-MoO ₃ /CN@SBA-15	N_2H_4 · H_2O	40	0.5-1	357-715	[6]
7	Au/rutile	НСООН	60	0.67-4	25-149	[7]
8	$[Mo_3S_4H_3(dmpe)_3]BPh_4^{[b]}$	HCOOH-Et ₃ N	70	18	0.54-1.85	[8]
9	Fe ₂ O ₃ /NGr@C	HCOOH-Et ₃ N	120	20-24	0.74-0.95	[9]

 Table S2 Various reported catalyst tested for reduction of nitroarenes into anilines.

10	γ - Fe	e ₂ O ₃ @HAP	P-Pd ^[c]	HCOO	NH ₄		60		3	3	5-30		[10]
11	Ag ₁ P	d ₉ @NPC-U 800	JiO-66-	HCOO HCOO	OH- NH₄		25	0.	33-6	1:	5-300	V	This vork
[a]	mol of	substrate	transformed	l per	mol	of	catalyst	per	hour.	[b]	dmpe	=	1,2

(bis)dimethylphosphinoethane. [c] HAP = hydroxyapatite.

Table S3 Reusability of Ag_1Pd_9 @NPC-UiO-66-800 catalyst for reduction of nitrobenzene to aniline.^[a]

Entry	Time (min)	Conversion (%)	Selectivity (%)
1	20	>99	>99
2	20	>99	>99
3	20	>99	>99
4	25	98	>99
5	30	98	>99

[a] nitrobenzene (1 mmol), FA (4 mmol), HCOONH₄ (4 mmol), Ag₁Pd₉@NPC-UiO-66-800 (1 mol% metal), methanol (5 mL); GC analysis using *n*-decane as an internal standard.

Fig S1. STEM-EDS line-scan of Ag₁Pd₉@NPC-UiO-66-800.

Fig S2. The XPS images of Ag₁Pd₉@NPC-UiO-66-800.

Fig S3. The Energy-dispersive X-ray spectroscopy (EDX) of Ag₁Pd₉@NPC-UiO-66-800.

Fig S4. XPS images of Pd 3d and Ag 3d for Pd@NPC-UiO-66-800, Ag₁Pd₉@NPC-UiO-66-800, and Ag@NPC-UiO-66-800.

Fig S5. TEM pattern of the reused Ag₁Pd₉@NPC-UiO-66-800.

Fig S6. XPS pattern of the reused Ag₁Pd₉@NPC-UiO-66-800.

Fig S7. Hammett plot for the catalytic reduction of substituted nitrobenzenes at 25

°C.

Reference

- [1] P. Zhou, D. Li, S. Jin, S. Chen, Z. Zhang, Int. J. Hydrogen Energy 2016, 41, 15218-15224.
- [2] L. Wang, J. Zhang, H. Wang, Y. Shao, X. Liu, Y.-Q. Wang, J. P. Lewis, F.-S. Xiao, *ACS Catal.* **2016**, *6*, 4110-4116.
- [3] X. Ma, Y. X. Zhou, H. Liu, Y. Li, H. L. Jiang, Chem. Commun. 2016, 52, 7719-7722.

- [4] S. Byun, Y. Song, B. M. Kim, ACS Appl. Mater. Int. 2016, 8, 14637-14647.
- [5] Y. Li, Y. X. Zhou, X. Ma, H. L. Jiang, Chem. Commun. 2016, 52, 4199-4202.
- [6] H. Huang, X. Wang, X. Li, C. Chen, X. Zou, W. Ding, X. Lu, Green Chem. 2017.
- [7] L. Yu, Q. Zhang, S. S. Li, J. Huang, Y. M. Liu, H. Y. He, Y. Cao, ChemSusChem 2015, 8, 3029-3035.
- [8] I. Sorribes, G. Wienhofer, C. Vicent, K. Junge, R. Llusar, M. Beller, *Angew. Chem. Int. Ed.* **2012**, *51*, 7794-7798.
- [9] R. V. Jagadeesh, K. Natte, H. Junge, M. Beller, ACS Catal. 2015, 5, 1526-1529.
- [10] L. Jiang, Z. Zhang, Int. J. Hydrogen Energy 2016, 41, 22983-22990.