Novel organotin(IV) Complexes derived from 4-fluorophenylselenoacetic acid: synthesis, characterization and *in vitro* cytostatic activity evaluation[†]

Ya-Ru Qiu,^a Ru-Fen Zhang*^a, Shao-Liang Zhang,^a Shuang Cheng,^{*b} Qian-Li Li,^a Chun-Lin Ma*^a

^aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China. Email: <u>zhangrf856@163.com</u>, <u>macl856@163.com</u>, chengshuang@lcu.edu.cn ^bSchool of Agriculture, Liaocheng University, Liaocheng, 252059, China.

Supporting Information

Table of contents

1. Exper	imenta	al section.			•••••	•••••	• • • • • • • • • •	•••••	• • • • • • • •	3
Synthe	sis of c	omplexes 5-	8							3
2. X-ray	crysta	llography	•••••	• • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	5
Table S	1. Selec	cted bond lea	ngths [Å]	and angles	s [°] for	comple	x 1			5
Table S	2. Selec	cted bond let	ngths [Å]	and angles	s [°] for	comple	x 2			5
Table S	3. Seled	cted bond ler	ngths [Å]	and angles	s [°] for	comple	x 3			6
Table S	4. Seleo	cted bond le	ngths [Å]	and angles	s [°] for	comple	x 4			6
Table S	5. Crys	tallographic	data and	structure r	efineme	ent parai	neters for	compl	exes 5	-8 7
Table S	6. Selec	cted bond let	ngths [Å]	and angles	s [°] for	comple	x 5			8
Table S	7. Selec	cted bond let	ngths [Å]	and angles	s [°] for	comple	x 6			8
Table	S8 .	Selected	bond	lengths	[Å]	and	angles	[°]	for	complex
7			.9							
Table	S9 .	Selected	bond	lengths	[Å]	and	angles	[°]	for	complex
8		1	10							
3.		Fi	igures			of				crystal
structur	e	•••••	•••••	•••••	•••••	•••••	11			
Figure	S1. O1	rtep pictur	e of con	nplex 1						11
Figure	S2. O1	rtep pictur	e of con	nplex 2						11
Figure	S3. O1	rtep pictur	e of con	nplex 3						11
Figure	S4. O1	rtep pictur	e of con	nplex 5						12
Figure	S5. O1	rtep pictur	e and su	upermole	cular s	structu	re of cor	nplex	6	12
Figure		S6.	O	rtep	pi	cture		of		complex
7				-	12					-
Figure	S7. O1	rtep pictur	e and su	apermole	cular s	structu	re of con	nplex 8	8	13
4.	The	U	-vis	Abs	orptio	n	and	1	Flue	rescence
Snectra				14	1					
- P										

1. Experimental section

Synthesis of complex 5-8

Synthesis of complex 5. The reaction was carried out under nitrogen atmosphere using standard Schlenk techniques. Complex 5 was synthesized by dissolving 4-fluorophenylthioacetic acid (0.186 g, 1.0 mmol), sodium ethoxide (0.068 g, 1.0 mmol) in dry benzene (30 ml) and stirring for 30 min, followed by the addition of trimethyltin chloride (0.199 g, 1.0 mmol) and stirred for 12 h at 45 °C. The reaction mixture was filtered and the solvent was gradually evaporated by vacuum distillation until a white solid product was obtained. The resulting product was then recrystallized from petroleum ether, and transparent colourless crystals were formed. Yield: 90%. M.P.: 90-93 °C. Anal. Calc. for C₁₁H₁₅FO₂SSn: C 37.86, H 4.33%; Found: C 38.08, H 4.50%. IR (KBr, cm⁻¹): v_{as} (COO), 1578; v_{s} (COO), 1409; [$\Delta v = v_{as}$ (COO)- v_{s} (COO), 169]; v(O-Sn-O), 632; v(Sn-C), 518; v(Sn-O), 499. ¹H NMR (CDCl₃, ppm): δ 7.38-7.42, 6.96-7.00 (m, 4H, Ar-H), 3.61 (s, 2H, -SCH₂), 0.53 (t, ²J_{Sn-H}= 56Hz, 9H, -3CH₃). ¹³C NMR (CDCl₃, ppm): δ 174.2 (COO), 163.2, 160.8, 132.5, 115.9, (Ar-C), 38.2 (CH₂-COO), -2.4 (CH₃). ¹¹⁹Sn NMR (CDCl₃, ppm): δ 149.7.

Synthesis of complex 6. Complex 6 was synthesized by following the method given for complex 5, using 4-fluorophenylthioacetic acid (0.372 g, 2.0 mmol), methanol (30 ml), sodium ethoxide (0.136 g, 2.0 mmol), dimethyltin chloride (0.220g, 1.0 mmol) as the starting source. The white solid was recrystallized from petroleum ether and transparent colourless crystals were formed. Yield: 80%. M.P.: 158-161 °C. Anal. Calc. for $C_{40}H_{48}F_4O_{10}S_4Sn_4$: C 35.12, H 3.54%; Found: C 35.31, H 3.29%. IR (KBr, cm⁻¹): $v_{as}(COO)$, 1633, 1580; $v_s(COO)$, 1496, 1329; $[\Delta v=v_{as}(COO)-v_s(COO)$, 137, 251]; v(O-Sn-O), 628; v(Sn-C), 568; v(Sn-O), 486. ¹H NMR (CDCl₃, ppm): δ 7.31-7.35, 6.96-7.00 (m, 16H, 4Ar-H), 3.50 (s, 8H, -4SCH₂), 0.73 (t, 24H, - 8CH₃). ¹³C NMR (CDCl₃, ppm): δ 174.9 (COO), 163.1, 160.6, 131.1, 116.1 (Ar-*C*), 38.9 (*C*H₂-COO), 6.5(*C*H₃). ¹¹⁹Sn NMR (CDCl₃, ppm): δ -172.3, -187.7.

Synthesis of complex 7. Unlike other complexes, complex 7 was prepared through a condensation reaction. A mixture of tri-*n*-butyltin oxide (0.596 g, 1.0 mmol) and 4-fluorophenylthioacetic acid (0.372 g, 2.0 mmol) in dry benzene (30 mL) was refluxing for 10 h at

80 °C. The solvent was slowly removed in vacuo to afford oily solid. The solid was recrystallized from the mixed solvent (V_{diethyl ether}/_{Vpetroleum ether} = 3:1) and transparent colourless needle-shaped crystals were formed. Yield: 78%. M.P.: 61-64 °C. Anal. Calc. for C₄₀H₆₆F₂O₄S₂Sn₂: C 50.55, H 7.00%; Found: C 50.75, H 6.76%. IR (KBr, cm⁻¹): v_{as}(COO), 1576; v_s(COO), 1412; [Δ v=v_{as}(COO)-v_s(COO), 164]; v(O-Sn-O), 632; v(Sn-C), 570; v(Sn-O), 510. ¹H NMR (CDCl₃, ppm): δ 7.37-7.40, 6.94-6.98 (m, 4H, Ar-H), 3.61 (s, 2H, -SCH₂), 1.22-1.56 (m, 18H, 3CH₂CH₂CH₂), 0.90 (t, ²J_{Sn-H} = 16Hz, 9H, -3CH₃). ¹³C NMR (CDCl₃, ppm): δ 174.2 (COO), 163.1, 160.6, 132.1, 115.9 (Ar-C), 29.7 (CH₂-COO), 27.7, 27.0, 16.6, 13.6 (*n*-Bu). ¹¹⁹Sn NMR (CDCl₃, ppm): δ 126.2.

Synthesis of complex 8. Complex 8 was synthesized by following the method given for complex 1, using 4-fluorophenylthioacetic acid (0.372 g, 2.0 mmol), dry benzene (30 ml), sodium ethoxide (0.136 g, 2.0 mmol), di-*n*-butyltin chloride (0.304 g, 1.0 mmol) as the starting source. The white solid was recrystallized from petroleum ether and transparent colourless crystals were formed. Yield: 85%. M.P.: 84-87 °C. Anal. Calc. for $C_{24}H_{30}F_2O_4S_2Sn$: C 47.78, H 5.01%; Found: C 48.02, H 4.72%. IR (KBr, cm⁻¹): v_{as} (COO), 1593; v_s (COO), 1462; [$\Delta v = v_{as}$ (COO)- v_s (COO), 131]; v(O-Sn-O), 684; v(Sn-C), 632; v(Sn-O), 512. ¹H NMR (CDCl₃, ppm): δ 7.39-7.43, 6.97-7.00 (m, 8H, 2Ar-H), 3.65 (4H, -2SCH₂), 1.24-1.54 (m, 12H, 2CH₂CH₂CH₂), 0.84 (t, ²J_{Sn-H} = 8Hz, 6H, 2CH₃). ¹³C NMR (CDCl₃, ppm): δ 179.4 (COO), 163.4, 160.9, 131.3, 116.1 (Ar-*C*), 37.2 (*C*H₂-COO), 26.4, 26.3, 25.5, 13.5 (*n*-Bu). ¹¹⁹Sn NMR (CDCl₃, ppm): δ -133.9.

2. X-ray crystallography

Table S1 Selected bond lengths [Å] and angles [°] for complex 1.

Complex 1			
Sn(1)-C(9)	2.111(8)	C(8)-O(1)	1.276(10)
Sn(1)-C(10)	2.159(9)	C(8)-O(2)	1.224(9)
Sn(1)-C(11)	2.104(10)	C(19)-O(3)	1.329(11)
Sn(2)-C(20)	2.102(11)	C(19)-O(4)	1.213(9)
Sn(2)-C(21)	2.138(9)	C(9)-Sn(1)-C(10)	126.4(3)
Sn(2)-C(22)	2.127(10)	C(11)-Sn(1)-C(9)	116.4(4)
Sn(1)-O(2)	2.451(6)	C(11)-Sn(1)-C(10)	115.5(4)
Sn(1)-O(1)#1	2.185(6)	O(1)#1-Sn(1)-O(2)	175.5(2)
O(1)-Sn(1)#3	2.185(6)	C(20)-Sn(2)-C(21)	124.6(4)
Sn(2)-O(3)#2	2.176(6)	C(20)-Sn(2)-C(22)	111.5(5)
Sn(2)-O(4)	2.432(5)	C(21)-Sn(2)-C(22)	121.6(5)
O(3)-Sn(2)#4	2.176(6)		

Symmetry code for complex 1: #1 x+1/2,-y+3/2,-z+2; #2 x-1/2,-y+3/2,-z+1; #3 x-1/2,-y+3/2,-z+2; #4 x+1/2,-y+3/2,-z+1.

Table S2 Selected bond length	hs [Å]	and angles	[°] 1	for complex 2	2.
-------------------------------	--------	------------	-------	---------------	----

Complex 2			
Sn(1)-C(9)	2.076(9)	C(9)-Sn(1)-C(10)	152.4(4)
Sn(1)-C(10)	2.101(9)	O(2)-Sn(1)-O(4)	171.6(2)
Sn(1)-O(1)	2.831	O(3)-Sn(1)-C(9)	103.9(3)
Sn(1)-O(2)	2.236(6)	O(3)-Sn(1)-C(10)	103.3(3)
Sn(1)-O(3)	2.049(5)	C(11)-Sn(2)-C(12)	141.0(5)
Sn(1)-O(4)	2.259(7)	O(3)-Sn(2)-O(5)	91.2(2)
Sn(2)-C(11)	2.094(10)	O(3)-Sn(2)-C(11)	107.5(4)

Sn(2)-C(12)	2.100(9)	O(3)-Sn(2)-C(12)	109.8(3)
Sn(2)-O(5)	2.323(7)	O(3)#1-Sn(2)-O(5)	168.0(2)
Sn(2)-O(3)	2.025(5)	O(3)-Sn(2)-O(3)#1	77.0(2)
Sn(2)-O(3)#1	2.142(5)	Sn(2)-O(3)-Sn(2)#1	103.0(2)
O(3)-Sn(2)#1	2.142(5)		

Symmetry code for complex 2: #1 -x+1/2, -y+3/2, -z.

Table S3 Selected bond lengths [Å] a	and angles [°] for complex 3 .
--------------------------------------	---------------------------------------

Complex 3			
Sn(1)-C(28)	2.147(5)	C(36)-Sn(1)-O(1)#1	89.8(2)
Sn(1)-C(32)	2.147(6)	C(28)-Sn(1)-O(3)	86.75(18)
Sn(1)-C(36)	2.153(6)	C(32)-Sn(1)-O(3)	87.35(19)
Sn(1)-O(1)#1	2.201(4)	C(36)-Sn(1)-O(3)	85.5(2)
Sn(2)-C(16)	2.138(7)	O(1)#1-Sn(1)-O(3)	175.33(13)
Sn(2)-C(20)	2.146(6)	C(20)-Sn(2)-C(16)	121.0(3)
Sn(2)-C(24)	2.139(5)	C(20)-Sn(2)-C(24)	122.3(3)
Sn(2)-O(4)	2.219(4)	C(16)-Sn(2)-C(24)	115.3(2)
Sn(2)-O(2)	2.466(4)	C(20)-Sn(2)-O(4)	98.0(2)
C(28)-Sn(1)-C(36)	119.3(2)	C(16)-Sn(2)-O(4)	88.6(2)
C(32)-Sn(1)-C(28)	124.3(3)	C(24)-Sn(2)-O(4)	94.84(18)
C(32)-Sn(1)-C(36)	115.3(2)	C(20)-Sn(2)-O(2)	84.5(2)
C(28)-Sn(1)-O(1)#1	95.92(19)	C(16)-Sn(2)-O(2)	84.3(2)
C(32)-Sn(1)-O(1)#1	94.26(19)	C(24)-Sn(2)-O(2)	89.52(18)

Symmetry code for complex **3**: #1 x+1, y, z; #2 x-1, y, z.

Table S4 Selected bond length	s [Å] and angles [°] for complex 4.
-------------------------------	-------------------------------------

Complex 4			
Sn(1)-C(9)	2.102(19)	C(9)#1-Sn(1)-C(9)	122.0(10)
Sn(1)-C(9)#1	2.102(19)	O(1)-Sn(1)-O(2)	53.6(2)

Sn(1)-O(1)	2.112(6)	O(1)#1-Sn(1)-O(2)	133.2(2)
Sn(1)-O(1)#1	2.112(6)	O(1)-Sn(1)-O(1)#1	79.6(4)
Sn(1)-O(2)	2.610(7)	O(2)-Sn(1)-O(2)#1	173.11
O(1)-C(1)	1.274(10)	O(2)#1-Sn(1)-O(2)#1	51.43
O(2)-C(1)	1.233(10)		

Symmetry code for complex 4: #1 - x + 1, y, -z + 3/2.

Table S5 Crystallographic data and structure refinement parameters for complexes 5-8.

Complex	5	6	7	8
Empirical formula	C ₁₁ H ₁₅ FO ₂ SSn	$C_{40}H_{48}F_4O_{10}S_4Sn_4\\$	$C_{40}H_{66}F_{2}O_{4}S_{2}Sn_{2}$	$C_{24}H_{30}F_2O_4S_2Sn$
Formula weight	348.98	1367.78	950.43	603.29
Wavelength [Å]	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	P2(1)/c	P2(1)/n	P-1	C2
a [Å]	11.0008(11)	11.6817(9)	10.5943(9)	18.6301(16)
b [Å]	10.2461(9)	11.9698(10)	14.4760(13)	5.1010(5)
c [Å]	13.0833(12)	17.8333(15)	16.9105(14)	16.2579(14)
α[]	90	90	87.2930(10)	90
β[]	107.192(2)	94.4010(10)	90.023(2)	119.173(3)
γ[]	90	90	68.535(11)	90
<i>V</i> [Å ³]	1408.8(2)	2486.2(4)	2410.4(4)	1349.0(2)
Ζ	4	2	2	2
Dcalc (Mg/m ³)	1.645	1.827	1.309	1.485
μ(mm ⁻¹)	1.958	2.219	1.163	1.142
F(000)	688	1336	976	612
Crystal size(mm)	0.46x0.38x0.22	0.31x0.18x0.10	0.37x0.11x0.10	0.42x0.16x0.15
Reflections collected	6851	12195	11635	3404
Unique reflections	2475	4368	8277	2198
Goodness-of-fit on F ²	1.076	0.962	1.154	1.101

R indices (all data)	$R_1 = 0.0675,$	$R_1 = 0.0874,$	$R_1 = 0.2379,$	$R_1 = 0.0702,$
	$wR_2 = 0.0791$	$wR_2 = 0.0779$	$wR_2 = 0.3111$	$wR_2 = 0.1772$
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0381,$	$R_1 = 0.0437,$	$R_1 = 0.1231,$	$R_1 = 0.0677,$

 ${}^{a}R_{1} = \sum ||Fo| - |Fc|| / \sum |Fo|; \ {}^{b}wR_{2} = \{\sum [w \ (F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \sum [w \ (F_{o}{}^{2})^{2}] \}^{1/2}$

Complex 5			
Sn(1)-C(9)	2.124(7)	C(11)-Sn(1)-C(9)	117.6(3)
Sn(1)-C(10)	2.117(6)	C(11)-Sn(1)-C(10)	123.0(3)
Sn(1)-C(11)	2.106(6)	O(2)#1-Sn(1)-O(1)	173.80(15)
Sn(1)-O(1)	2.389(5)	C(11)-Sn(1)-O(2)#1	93.8(2)
Sn(1)-O(2)#1	2.191(4)	C(10)-Sn(1)-O(2)#1	95.6(2)
O(2)-Sn(1)#2	2.191(4)	C(9)-Sn(1)-O(2)#1	88.7(2)
O(1)-C(8)	1.231(7)	C(11)-Sn(1)-O(1)	88.8(2)
O(2)-C(8)	1.278(7)	C(10)-Sn(1)-O(1)	87.8(2)
C(10)-Sn(1)-C(9)	118.7(3)	C(9)-Sn(1)-O(1)	85.1(2)

 Table S6 Selected bond lengths [Å] and angles [°] for complex 5.

Symmetry code for complex 5: #1 -x+2, y-1/2, -z+1/2; #2 -x+2, y+1/2, -z+1/2.

 Table S7 Selected bond lengths [Å] and angles [°] for complex 6.

Complex 6			
Sn(1)-C(11)	2.092(6)	O(5)-C(13)	1.241(7)
Sn(1)-C(12)	2.103(7)	O(3)#1-Sn(1)-C(11)	107.2(2)
Sn(1)-O(3)	2.163(4)	O(3)#1-Sn(1)-C(12)	103.5(2)
Sn(1)-O(3)#1	2.057(4)	C(11)-Sn(1)-C(12)	148.0(3)
Sn(1)-O(4)	2.302(4)	O(3)#1-Sn(1)-O(3)	76.09(16)
O(3)-Sn(1)#1	2.057(4)	C(11)-Sn(1)-O(3)	96.5(2)
Sn(2)-C(9)	2.097(7)	C(12)-Sn(1)-O(3)	99.4(2)
Sn(2)-C(10)	2.103(7)	O(3)#1-Sn(1)-O(4)	88.87(15)
Sn(2)-O(2)	2.175(4)	C(11)-Sn(1)-O(4)	82.6(2)

Sn(2)-O(3)	2.001(4)	C(12)-Sn(1)-O(4)	89.3(2)
Sn(2)-O(5)#1	2.251(5)	O(3)-Sn(1)-O(4)	163.99(16)
O(5)-Sn(2)#1	2.251(5)	C(9)-Sn(2)-C(10)	135.4(3)
O(1)-C(8)	1.202(8)	O(3)-Sn(2)-O(2)	78.50(16)
O(2)-C(8)	1.281(8)	O(3)-Sn(2)-C(9)	112.2(3)
O(4)-C(13)	1.266(7)	O(3)-Sn(2)-C(10)	112.2(2)

Symmetry code for complex **6**: #1 -x, -y, -z.

 Table S8 Selected bond lengths [Å] and angles [°] for complex 7.

Complex 7			
Sn(1)-C(1)	2.06(3)	C(1)-Sn(1)-O(1)	97.2(8)
Sn(1)-C(9)	2.12(3)	C(9)-Sn(1)-O(1)	96.6(8)
Sn(1)-C(5)	2.16(2)	C(5)-Sn(1)-O(1)	85.5(9)
Sn(1)-O(1)	2.182(16)	C(1)-Sn(1)-O(4)#1	86.4(8)
Sn(1)-O(4)#1	2.513(17)	C(9)-Sn(1)-O(4)#1	85.9(8)
O(4)-Sn(1)#2	2.513(17)	C(5)-Sn(1)-O(4)#1	87.0(8)
Sn(2)-C(21)	2.09(3)	O(1)-Sn(1)-O(4)#1	172.5(6)
Sn(2)-C(17)	2.12(2)	C(21)-Sn(2)-C(17)	123.4(10)
Sn(2)-C(13)	2.18(2)	C(21)-Sn(2)-C(13)	120.5(10)
Sn(2)-O(3)	2.190(17)	C(17)-Sn(2)-C(13)	114.1(10)
Sn(2)-O(2)	2.492(18)	C(21)-Sn(2)-O(3)	98.3(8)
O(1)-C(25)	1.30(3)	C(17)-Sn(2)-O(3)	95.8(8)
O(2)-C(25)	1.18(3)	C(13)-Sn(2)-O(3)	89.7(8)
O(3)-C(33)	1.28(3)	C(21)-Sn(2)-O(2)	84.1(8)
O(4)-C(33)	1.16(3)	C(17)-Sn(2)-O(2)	87.5(7)
C(1)-Sn(1)-C(9)	122.1(10)	C(13)-Sn(2)-O(2)	84.3(8)
C(1)-Sn(1)-C(5)	121.0(11)	O(3)-Sn(2)-O(2)	173.9(6)
C(9)-Sn(1)-C(5)	115.7(11)		

Symmetry code for complex 7: #1 x+1, y, z; #2 x-1, y, z.

Complex 8			
Sn(1)-C(9)	2.093(6)	O(2)-C(8)	2.296(5)
Sn(1)-C(9)#1	2.093(6)	C(9)#1-Sn(1)-O(2)	75.2(2)
Sn(1)-O(2)	2.130(4)	C(9)-Sn(1)-O(1)	90.7(2)
Sn(1)-O(2)#1	2.130(4)	C(9)#1-Sn(1)-C(9)	137.1(4)
Sn(1)-O(1)	2.557(3)	O(2)#1-Sn(1)-O(2)	79.48(18)
Sn(1)-O(1)#1	2.557(3)	O(1)#1-Sn(1)-O(1)	172.30(19)
O(1)-C(8)	1.185(7)	O(1)-Sn(1)-O(2)	54.1(3)

 Table S9 Selected bond lengths [Å] and angles [°] for complex 8.

Symmetry code for complex 8: #1 -x+2, y, -z+2.

3. Figures of crystal structure

Figure S1 The Ortep picture of 1. Hydrogen atoms are omitted for clarity.

Figure S2 The Ortep picture of 2. Hydrogen atoms are omitted for clarity.

Figure S3 The Ortep picture of 3. Hydrogen atoms are omitted for clarity.

Figure S4 The Ortep picture of 5. Hydrogen atoms are omitted for clarity.

Figure S5 The Ortep picture (a) and 1D supermolecular structure constructed by $\pi \cdots \pi$ (blue

dashes) interactions (b) of 6. Hydrogen atoms are omitted for clarity.

Figure S6 The Ortep picture of 7. Hydrogen atoms are omitted for clarity.

Figure S7 The Ortep picture (a) and 1D supermolecular structure constructed by C-H…O

(blue dashes) interactions (b) of 8. Hydrogen atoms are omitted for clarity.

Table S10 UV-Vis absorption and fluorescence data				
	λ_{abs} (nm)		λ_{em} (nm)	
_	DMF	culture medium	DMF	culture medium
solvent	/	/	329	343
1	272	247 (main), 298	332	345
2	272	249 (main), 296	329	342
3	272	250 (main), 298	329	344
4	272	249 (main), 297	331	345
Ligand	273	247 (main), 298	330	341

4. The UV-vis Absorption and Fluorescence Spectra