Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

New Journal of Chemistry

<u>Supporting Information</u> Hypochlorite promoted inhibition of photo-induced electron transfer in phenothiazine-borondipyrromethene donor-acceptor dyad: A cost-effective and

metal-free "turn-on" fluorescent chemosensor for hypochlorite

Disha Soni,^a Suneel Gangada,^a Naresh Duvva,^b Tapta Kanchan Roy,^c Surendra Nimesh,^d Geeta Arya,^d Lingamallu Giribabu^{b,*} and Raghu Chitta^{a,*}

- ^a Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandar Sindri, Tehsil: Kishangarh, Dist. Ajmer, Rajasthan 305817, India.
- ^b Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana – 500007, India.
- ^c Department of Chemistry and Chemical Sciences, Central University of Jammu, Jammu 180011, India.
- ^d Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Tehsil: Kishangarh, Dist. Ajmer, Rajasthan 305817, India.

	Table of Contents	Page No.
Fig. S1	¹ H NMR spectrum of 10-(4-Formylphenyl)phenothiazine in CDCl ₃ .	S3
Fig. S2	¹³ C NMR spectrum of 10-(4-Formylphenyl)phenothiazine in CDCl ₃ .	S3
Fig. S3	¹ H NMR spectrum of probe 1 in CDCl ₃ .	S4
Fig. S4	¹³ C NMR spectrum of probe 1 in $CDCl_3$.	S4
Fig. S5	ESI-MS spectrum of probe 1 in acetonitrile.	S5
Fig. S6	Absorbance changes in 1 (4.6 \times 10 ⁻⁶ M) upon addition of increasing amounts of	S5
	NaOCl in PBS buffer: ACN (9:1 v/v).	
Fig. S7	Solutions of probe 1 in PBS buffer with increasing amounts of NaOCl in	S 6
	presence of (a) visible light and (b) UV-light of $\lambda = 365$ nm.	
Fig. S8	Fluorescence changes in $\{1 (2.3 \times 10^{-6} \text{ M}) + \text{NaOCl} (4.54 \times 10^{-6} \text{ M})\}$ w.r.t. time	S6
	(in minutes) in PBS buffer: ACN (9:1 v/v).	
Fig. S9	Fluorescence changes of 1 (2.3 \times 10 ⁻⁶ M) upon addition of increasing amounts	S7
	of H_2O_2 in PBS buffer: ACN (9:1 v/v).	
Fig S10	Fluorescence changes in 1 (2.3 \times 10 ⁻⁶ M) upon addition of increasing amounts	S7
	of OH in PBS buffer: ACN (9:1 v/v).	
Fig. S11	Fluorescence changes in 1 (2.3 \times 10 ⁻⁶ M) upon addition of increasing amounts	S 8
	of ${}^{1}O_{2}$ in PBS buffer:ACN (9:1 v/v).	
Fig. S12	Fluorescence changes in 1 (2.3 \times 10 ⁻⁶ M) upon addition of increasing amounts	S 8
	of O_2^- in PBS buffer: ACN (9:1 v/v).	
Fig. S13	Fluorescence changes in 1 (2.3 \times 10 ⁻⁶ M) upon addition of increasing amounts	S9
	of HCl in PBS buffer: ACN (9:1 v/v).	
Fig. S14	SN distance (brown), dihedral angle around SN axis (black), and natural	S10
	bond orbital (NBO) charges (blue) of N, S, and O of (a) BODIPY, (b) phenyl	
	phenothiaizine and its oxidized products i.e., sulfoxide and sulfone, and (c)	
	dyads 1, 1+O, and 1+2O calculated using triple hybrid B3LYP method with 6-	
	311+G* set.	
Fig. S15	Molecular Electron Potential maps (MEPs) and frontier orbitals of 1, (1+O),	S11
	and (1+2O) calculated using triple hybrid B3LYP method with 6-311 +G* set.	

Fig. S2. ¹³C NMR spectrum of 10-(4-Formylphenyl)phenothiazine in CDCl₃.

Fig. S4. ¹H NMR spectrum of probe 1 in CDCl₃.

Fig. S5. ESI-MS spectrum of probe 1 in acetonitrile.

Fig. S6: Absorbance changes in 1 (4.6×10^{-6} M) upon addition of increasing amounts of NaOCl in PBS buffer: ACN (9:1 v/v).

New Journal of Chemistry

Fig. S7. Solutions of probe 1 in PBS buffer with increasing amounts of NaOCl in presence of (a) visible light and (b) UV-light of $\lambda = 365$ nm.

Fig. S8: Fluorescence changes in $\{1 (2.3 \times 10^{-6} \text{ M}) + \text{NaOCl} (4.54 \times 10^{-6} \text{ M})\}$ w.r.t. time (in minutes) in PBS buffer: ACN (9:1 v/v).

Fig. S9: Fluorescence changes of 1 (2.3×10^{-6} M) upon addition of increasing amounts of H₂O₂ in PBS buffer:ACN (9:1 v/v).

Fig. S10: Fluorescence changes in 1 (2.3×10^{-6} M) upon addition of increasing amounts of 'OH in PBS buffer: ACN (9:1 v/v).

Fig. S11: Fluorescence changes in 1 (2.3×10^{-6} M) upon addition of increasing amounts of ${}^{1}O_{2}$ in PBS buffer:ACN (9:1 v/v).

Fig. S12: Fluorescence changes in 1 (2.3×10^{-6} M) upon addition of increasing amounts of O₂⁻ in PBS buffer:ACN (9:1 v/v).

Fig. S13: Fluorescence changes in 1 (2.3×10^{-6} M) upon addition of increasing amounts of HCl in PBS buffer:ACN (9:1 v/v).

Fig. S14. S^{...}N distance (**brown**), dihedral angle around S^{...}N axis (**black**), and natural bond orbital (NBO) charges (**blue**) of N, S, and O of (a) BODIPY, (b) phenyl phenothiaizine and its oxidized products i.e., sulfoxide and sulfone, and (c) dyads 1, 1+O, and 1+2O calculated using triple hybrid B3LYP method with 6-311+G* set.

New Journal of Chemistry

Fig. S15. Molecular Electrostatic Potential maps (MEPs) and frontier orbitals of 1, (1+O), and (1+2O) calculated using triple hybrid B3LYP method with 6-311 +G* set.