Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Renato Rabelo,^a Ana K. Valdo,^a Craig Robertson,^b Jim A. Thomas,^b Humberto O. Stumpf,^c Felipe T. Martins,^a Emerson F. Pedroso,^d Miguel Julve,^{e,*} Francesc Lloret^e and Danielle Cangussu^{a,*}

Details of synthesis and characterization of Hbpcam: The Hbpcam was obtained with a yield of 86%, by using a similar methodology to isolate the Hbpca ligand.^{16b}

¹H NMR (CDCl₃): δ 7.69 (t, 2H, J = 4.9Hz), 9.05 (q, 4H, J = 4.9Hz), 12.88 (s, 1H). Anal. Calc. for C₁₀H₇N₅O₂: C, 52.40; H, 3.05; N, 30.57; Found: C, 52.37; H, 3.16; N, 30.8%. IR (KBr/cm⁻¹): 3330s [v(N-H)]; 1771s [v(C=O)].

IR spectra of Hbpcam and complexes 1-3:

Fig. S1 FTIR spectra of Hbpcam.

Fig. S2 FTIR spectra of 1.

Fig. S3 FTIR spectra of 2.

Fig. S4 FTIR spectra of 3.

UV-Vis spectra on solid samples of 1-3:

Fig. S5 UV-Vis spectra on a solid sample of 1.

Fig. S6 UV-Vis spectra on a solid sample of 2.

Fig. S7 UV-Vis spectra on a solid sample of 3.

Intermolecular interactions in 2:

Figure S8. A view of the intermolecular interactions in crystal structure **2** responsible for the deviation from planarity of the (a) **A** and (b) **B** complex cations.

Cyclic voltammogram of 1:

Fig. S9 Cyclic voltammogram of **1** (0.1 M) in MeCN. Potentials are vs. SSCE, with scan rate 100 mV s⁻¹, glassy carbon working electrode, and 0.1 M nBu_4NPBu_6 .

$\chi_{\rm M}T$ versus *T* plots:

Figure S10. Thermal dependence of $\chi_M T$ for **3**: (o) experimental; (-) best-fit curve through eqn (3) (see text).

Crystallographic data and refinement parameters:

Table S1	. Crystal	data and	refinement	statistics	for 1	the com	plexes	1-3.
----------	-----------	----------	------------	------------	-------	---------	--------	------

	1	2	3
Structural formula	$C_{22}H_{20}N_{10}ClCoO_{10}S$	$C_{46}H_{32}N_{24}Co_3O_{10}S_5$	$C_{20}H_{14}N_{10}NiO_5$
Fw (g/mol)	710.92	1416.54	533.12
Crystal system	monoclinic	monoclinic	triclinic

Space group		$P2_1/n$	Сс	<i>P</i> (-1)
Ζ		4	4	2
<i>T</i> (K)		298(2)	298(2)	150(2)
Unit cell	а	10.1227(2)	19.5807(5)	8.8015(15)
dimensions	b	22.0252(6)	24.4918(6)	10.0257(17)
	С	12.4721(3)	14.4619(4)	13.876(2)
	α	90	90	74.233(3)
	β	94.1980(10)	117.8860(10)	83.559(3)
	γ	90	90	64.292(3)
V (Å ³)		2773.25(11)	6130.1(3)	1061.7(3)
pcalc (Mg/m ³)		1.703	1.535	1.668
Absorption coeffic (mm ⁻¹)	cient μ	0.866	1.046	0.973
θ range for data collection (°)		1.85 – 27.43	1.66 - 26.44	1.52 - 27.58
Index ranges		-12 <u>≤ h ≤</u> 9	-24 <u>≤ h ≤</u> 23	-11 <u>< h < 1</u> 1
		-28 <u>< k <</u> 23	-30 <u>≤ k ≤</u> 30	-13 <u>< k <</u> 13
		-16 <u>< l</u> ≤ 8	-18 <u>< l <</u> 16	-18 <u>< l <</u> 17
Data collected		19908	22885	12287
Unique reflections		5927	10478	4765
Observed reflections [I		4832	8975	3468

 $> 2\sigma(I)$]

Symmetry factor (R_{int})	0.0329	0.0231	0.0546
Completeness to θ_{\max}	98.6 (up to 25°)	98.3	97.1
(%)			
<i>F</i> (000)	1448	2862	544
Refined parameters	442	794	328
Goodness-of-fit on F^2	1.037	0.677	1.015
$(S)^a$			
Final R_I^b factor $[I >$	0.0415	0.0422	0.0535
2σ(<i>l</i>)]			
wR_2^c factor (all data)	0.1117	0.1440	0.1478
Largest diff. peak / hole	0.415/-0.497	0.562/-0.749	1.460/-0.650
$(e \mathbf{A}^{-})$			

Table S2. Selected bond lengths (Å) and angles (deg) in 1-3

$[M1(bpcam)_2]^+$	1	2		3
		Α	В	
M1 ^a -N1 N11	1.9444(19)	1.928(6)	1.921(7)	2.112(3)
M1-N2 N12	1.8975(18)	1.887(5)	1.903(6)	2.018(3)
M1-N3 N13	1.9433(19)	1.943(6)	1.956(6)	2.096(3)
M1-N6 N16	1.939(2)	1.948(6)	1.932(6)	2.081(3)
M1-N7 N17	1.8934(18)	1.908(5)	1.898(6)	2.014(3)
M1-N8 N18	1.9461(19)	1.941(6)	1.927(6)	2.114(3)
N2-M1-N1 N12-M1-N11	82.90(8)	82.9(2)	83.3(2)	78.58(10)

N3-M1-N1 N13-M1-N11	166.09(8)	165.7(2)	166.0(2)	158.13(11)
N6-M1-N1 N16-M1-N11	90.84(8)	91.1(2)	92.0(2)	91.68(10)
N7-M1-N1 N17-M1-N11	98.29(8)	98.4(2)	94.7(2)	102.13(11)
N1-M1-N8 N11-M1-N18	90.69(8)	89.8(2)	90.5(2)	91.91(10)
N2-M1-N3 N12-M1-N13	83.19(8)	82.8(2)	82.7(2)	79.56(10)
N2-M1-N6 N12-M1-N16	97.09(8)	97.1(3)	97.5(2)	102.29(11)
N7-M1-N2 N17-M1-N12	178.80(8)	178.5(2)	177.9(2)	178.48(11)
N2-M1-N8 N12-M1-N18	96.96(8)	97.5(2)	96.3(2)	99.13(11)
N6-M1-N3 N16-M1-N13	90.68(8)	91.3(2)	89.9(2)	92.86(11)
N7-M1-N3 N17-M1-N13	95.61(8)	95.9(2)	99.3(2)	100.73(10)
N3-M1-N8 N13-M1-N18	91.18(8)	91.4(2)	90.9(2)	91.60(10)
N7-M1-N6 N17-M1-N16	82.95(8)	82.3(2)	82.8(2)	79.20(10)
N6-M1-N8 N16-M1-N18	165.95(8)	165.4(2)	166.2(2)	158.57(11)
N7-M1-N8 N17-M1-N18	83.01(8)	83.2(2)	83.4(2)	79.38(11)
[M2(NCS) ₄] ²⁻	2			

M2 ^b -N1T	1.946(8)	
M2-N2T	1.928(14)	
M2-N3T	1.943(10)	
M2-N4T	1.965(8)	
N1T-M2-N2T	103.6(5)	
N1T-M2-N3T	110.5(4)	
N1T-M2-N4T	112.6(4)	
N2T-M2-N3T	110.0(4)	
N2T-M2-N4T	103.8(4)	
N3T-M2-N4T	115.3(4)	

^a M1 means either Co1, Co2 or Ni1, in which N1-N8 is coordinated to Co1 or Ni1, while N11-N18 coordinates to Co2.

^b M2 means Co3 in structure **2**.