New Journal of Chemistry

Supporting Information

Addition of \boldsymbol{N}-nucleophiles to gold(III)-bound isocyanides leading to shortlived gold(III) acyclic diaminocarbene complexes

Tatyana B. Anisimova, ${ }^{\text {a }}$ Mikhail A. Kinzhalov, ${ }^{\text {b }}$ M. Fátima C. Guedes da Silva, ${ }^{\text {a }}$ Alexander S. Novikov, ${ }^{\text {b }}$ Vadim Yu. Kukushkin, ${ }^{\text {b }}$ Armando J. L. Pombeiro, ${ }^{* \mathbf{a}}$ and Konstantin V. Luzyanin*b,c
${ }^{a}$ Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av.
Rovisco Pais, 1049-001 Lisbon, Portugal, e-mail: pombeiro@tecnico.ulisboa.pt
${ }^{b}$ Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034,
Russian Federation
${ }^{c}$ Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD,
United Kingdom, e-mail: konstantin.luzyanin@liverpool.ac.uk

Content

Experimental section 3
Materials and instrumentation 3
X-ray structure determinations 3
Computational details 5
Preparation of gold(III)-isocyanide complexes 5-8 6
Characterization of gold(III)-isocyanide complexes 5-8 7
DFT calculations for model isocyanide complexes $\left[\mathrm{AuCl}_{3}(\mathrm{CNMe})\right]$ and 11
[$\mathrm{AuCl}(\mathrm{CNMe})$]
Addition of benzophenone hydrazone to gold(III)-bound isocyanides 13
Characterization of the prepared carbene complexes 14-16 14
Reaction of $\left[\mathrm{AuCl}_{3}\left(\mathrm{CNR}^{1}\right)\right](5-8)$ with amines 17
Characterization of $\mathbf{1 2}$ 19
Reactions of $\left[\mathrm{AuCl}_{3}\left(\mathrm{CNR}^{1}\right)\right](5-8)$ with other NH-nucleophiles 22
Theoretical evaluation of the bonding situation in dimers $\mathbf{5}, \mathbf{1 4}$, and (\boldsymbol{R}) - $\mathbf{1 2}$ 23
Cartesian atomic coordinates of model species 27

Experimental Section

Materials and instrumentation

$\mathrm{HAuCl}_{4} \bullet 3 \mathrm{H}_{2} \mathrm{O}$, the isocyanides, and all nucleophiles were obtained from Aldrich and used as received without further purification. Tetrahydrothiophene, salicylaldehyde and 9-fluorenone hydrazones were purchased from Alfa Aesar, and benzophenone imine was purchased from Acros. All solvents and HCl were ordered from Fisher Chemical and were used without further purification apart from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ that was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ or CaCl_{2} and distilled. The complexes $\left[\mathrm{AuCl}\left(\mathrm{CNR}^{1}\right)\right]^{1}(\mathbf{1} \mathbf{- 4})$ were synthesized accordingly to the previously reported methods. C, H, N elemental analyses were carried out by the Microanalytical Service of the Instituto Supérior Técnico. $\mathrm{ESI}^{+/-}$mass spectra were measured on a Varian $500-\mathrm{MS}$ LC ion trap mass spectrometer (IST-Node) and a Bruker micrOTOF ESI-MS-spectrometer (Saint Petersburg State University) in $\mathrm{MeCN}, \mathrm{MeOH}$, or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the solvents. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and all the 2D NMR spectra were recorded on a Bruker Avance II +400 MHz spectrometer at ambient temperature.

X-ray structure determinations

Crystals were mounted in Nylon loops with small amount of cryo-oil, and measured at 150 K . Intensity data were collected using a Bruker AXS-KAPPA APEX II diffractometer with graphite monochromatic $\mathrm{Mo}-\mathrm{K} \alpha$ (λ 0.71073) radiation. Data were collected using omega scans of 0.5° per frame and full sphere of data was obtained. Cell parameters were retrieved using Bruker SMART software and refined using Bruker SAINT ${ }^{2}$ on all the observed reflections. Absorption corrections were applied using SADABS. ${ }^{3}$ Structures were solved by direct methods by using the SHELXS-97 ${ }^{3}$ package and refined with SHELXL-2013. ${ }^{3}$ Calculations were performed using the WinGX System-Version 2013.03. ${ }^{4}$ The hydrogen
atoms were located from the difference Fourier synthesis but inserted at geometrically calculated positions and included in the refinement using the riding-model approximation. CCDC1471327-1471329 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Table S1. Crystal Data and Structure Refinement Details for $\mathbf{5 , 1 4 \bullet} \mathrm{CHCl}_{3}$ and $(\boldsymbol{R}) \mathbf{- 1 2}$.

	5	$14 \cdot \mathrm{CHCl}_{3}$	(R)-12
Empirical formula	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{AuCl}_{3} \mathrm{~N}$	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{AuCl}_{6} \mathrm{~N}_{3}$	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{AuCl}_{5} \mathrm{~N}_{2}$
Formula weight	434.49	750.10	618.59
Crystal system	Monoclinic	Monoclinic	Orthorhombic
space group	P 21/n	P 21/c	C 2221
$a(\AA)$	8.2328(3)	10.0454(10)	8.9036(5)
$b(\AA)$	13.6539(6)	14.1896(12)	21.1337(13)
$c(\AA)$	10.9324(5)	19.4905(18)	26.6726(16)
α (deg)	90	90	90
β (deg)	102.002(2)	93.721(5)	90
$\gamma(\mathrm{deg})$	90	90	90
$V\left(\AA^{3}\right)$	1202.05(9)	2772.3(4)	5018.9(5)
Z	4	4	8
No. rfls.	9451	24691	16434
Rfls Unique/Obs	2465/2051	5061/3945	5012/3613
$\rho_{\text {calc }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	2.401	1.797	1.637
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	12.866	5.902	6.396
$\mathrm{R}_{\text {int }}$	0.0425	0.0582	0.0711
Final R1 ${ }^{\text {a }}$, wR2 ${ }^{\text {b }}$ $(I \geq 2 \sigma)$	0.0301, 0.0703	0.0305, 0.0589	0.05300 .1278
GOF	1.117	1.022	1.013

${ }^{\bar{a}} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \Sigma\right| F_{\mathrm{o}} \mid \cdot{ }^{b} w R_{2}=\left[\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$

Computational details

The single point calculations for dimeric clusters 5, 14, and (\boldsymbol{R})-12 have been carried out at DFT level of theory using the M06 functional ${ }^{5}$ (this functional was specifically developed to describe weak dispersion forces and non-covalent interactions) with the help of Gaussian09^{6} program package. The experimental X-ray geometries were used as starting points. Two approaches were used, viz. (i) the Douglas-Kroll-Hess $2^{\text {nd }}$ order scalar relativistic calculations ${ }^{7}$ requested relativistic core Hamiltonian were carried out using DZP-DKH basis sets 8 for all atoms; (ii) the non-relativistic calculations were carried out using a quasirelativistic Stuttgart pseudopotential that described 60 core electrons and the appropriate contracted basis set for the gold atoms ${ }^{9}$ and the $6-311+G^{*}$ basis sets for other atoms. The topological analysis of the electron density distribution with the help of the QTAIM method developed by Bader ${ }^{10}$ has been performed by using the Multiwfn program ${ }^{11}$ (version 3.3.4). The Wiberg bond indices (WI) were computed by using the natural bond orbital (NBO) partitioning scheme. ${ }^{12}$ The full geometry optimization of $\left[\mathrm{AuCl}_{3}(\mathrm{CNMe})\right]$ and $[\mathrm{AuCl}(\mathrm{CNMe})]$ structures have been also carried out at DFT level of theory using the M06 functional ${ }^{5}$ with the help of Gaussian- 09^{6} program package using a quasi-relativistic Stuttgart pseudopotential that described 60 core electrons and the appropriate contracted basis set for the gold atoms ${ }^{9}$ and the $6-311+\mathrm{G}^{*}$ basis sets for other atoms. No symmetry operations have been applied and Hessian matrix was calculated analytically for the optimized structures in order to prove the location of correct minima (no imaginary frequencies). The Cartesian atomic coordinates of all model species are given in Table $\mathbf{S 3}$.

Preparation of $\left[\mathrm{AuCl}_{3}\left(\mathrm{CNR}_{1}\right)\right](5-8)$

An excess of dry gaseous chlorine was bubbled through a solution of $\left[\mathrm{AuCl}\left(\mathrm{CNR}^{1}\right)\right]$ $\left(\mathrm{R}^{1}=\mathrm{Cy} 1, \mathrm{Xyl} \mathbf{2}, \mathrm{Bu}^{t} \mathbf{3},(S)-\mathrm{CHMePh} 4\right)(0.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ for ca. 30 sec . Solutions of the thus formed $\left[\mathrm{AuCl}_{3}\left(\mathrm{CNR}^{1}\right)\right]\left(\mathrm{R}^{1}=\mathrm{Xyl} 5, \mathrm{Cy} \mathbf{6}, \mathrm{Bu}^{t} 7,(S)-\mathrm{CHMePh} \mathbf{8}\right)$ were evaporated to dryness under a flow of N_{2} at $\mathrm{RT}\left(20-25^{\circ} \mathrm{C}\right)$ giving target compounds as bright yellow solids (5-7, 96-99\% isolated yields) or a yellow oil (8, 83\%). Crystals of $\mathbf{5}$ suitable for X-ray diffraction were prepared by slow evaporation of its $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at RT under dinitrogen.

[$\mathbf{A u C l}_{\mathbf{3}} \mathbf{(\mathbf { C N X y l })]} \mathbf{(5 , y e l l o w}$ solid, $\mathbf{9 9 \%}$). Elemental analyses were not conclusive due to slow decomposition of compound at RT. MS (ESI $) m / z:\left[\mathrm{M}+\mathrm{Cl}+2 \mathrm{MeCN}+\mathrm{H}_{2} \mathrm{O}\right]^{-}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{AuCl}_{4} \mathrm{O}$ 570, found: 570; $\left[\mathrm{M}+\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}\right]^{-}$calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{AuCl}_{4} \mathrm{NO}: 488$, found: 488; $[\mathrm{M}-\mathrm{CNXyl}+\mathrm{Cl}]^{-}$ calcd. for $\mathrm{AuCl}_{4}: 339$, found: 339 . FT-IR (KBr , selected bands, cm^{-1}): 3050-2917 (w, $\mathrm{C}-\mathrm{H}), 2268(\mathrm{~m}, \mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 7.51\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}} 7.7 \mathrm{~Hz}, 1 H, p-\mathrm{CH}\right), 7.32(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}} 7.7 \mathrm{~Hz}, 2 H, \mathbf{m}-\mathrm{CH}\right), 2.57 \mathrm{ppm}(\mathrm{s}, 6 H, \mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl} 2, \delta\right): 138.0(p-$ $\mathrm{CH}), 133.1(\mathrm{o}-\mathrm{C}), 128.8(\mathrm{~m}-\mathrm{CH}), 18.2(\mathrm{Me}), \mathrm{C}-\mathrm{N} \equiv \mathrm{C}$ carbons were not detected due to the poor solubility and low stability in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

[$\left.\mathbf{A u C l}_{\mathbf{3}}(\mathbf{C N C y})\right]$ (6, yellow solid, 96\%). Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NCl}_{3} \mathrm{Au}:$ C 20.38 , H $2.69 \mathrm{~N}, 3.40 \%$, found: C 20.32, H 2.61, $\mathrm{N} 3.20 \%$. MS (ESI-) $m / z:[\mathrm{M}+\mathrm{Cl}]^{-}$calcd. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NAuCl}_{4}: 448$, found: 448. FT-IR $\left(\mathrm{KBr}\right.$, selected bands, $\left.\mathrm{cm}^{-1}\right): 2945,2928$ and $2860(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 2297(\mathrm{~s}, \mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 4.38-4.30(\mathrm{~m}, 1 H, \mathrm{CH}), 2.15-1.90$ and $1.87-1.73(2 \mathrm{~m}, 4 H+2 H, \alpha-$ and $\gamma-$ $\left.\mathrm{CH}_{2}\right), 1.65-1.50 \mathrm{ppm}\left(\mathrm{m}, 4 \mathrm{H}, \beta-\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl} 2, \delta\right): 111.8\left(\mathrm{t},{ }^{1} J_{\mathrm{NC}}\right.$ $33 \mathrm{~Hz}, \mathrm{CN})$, $58.0(\mathrm{CH}), 30.9\left(\alpha-\mathrm{CH}_{2}\right), 24.3\left(\beta-\mathrm{CH}_{2}\right), 22.2\left(\gamma-\mathrm{CH}_{2}\right)$.

$\left[\mathbf{A u C l}_{\mathbf{3}}\left(\mathbf{C N B u}^{t}\right)\right]$ (7, yellow solid, 96\%). Anal. calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NCl}_{3} \mathrm{Au} \cdot 0.5 \mathrm{CHCl}_{3}: \mathrm{C} 14.81, \mathrm{H} 2.15, \mathrm{~N} 3.14 \%$; found: C 14.67, H 2.12, $\mathrm{N}, 3.37 \%$. $\mathrm{MS}\left(\mathrm{ESI}^{-}\right) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Cl}]^{-}$calcd. for 422, found: 422; $\left[\mathrm{M}-\mathrm{CNBu}^{t}+\mathrm{Cl}\right]^{-}$calcd. for $\mathrm{AuCl}_{4}: 339$, found: 339. FT-IR (KBr, selected bands, $\left.\mathrm{cm}^{-1}\right): 2987(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 2291(\mathrm{~s}, \mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.71 \mathrm{ppm}(\mathrm{s}, 9 H, \mathrm{Me})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 112.1\left(\mathrm{t},{ }^{1} J_{\mathrm{NC}} 29 \mathrm{~Hz}, \mathrm{CN}\right), 63.6(\mathrm{C}), 29.4(\mathrm{Me})$.
[$\mathbf{A u C l}_{3}\{\mathbf{C N}((\boldsymbol{S})$-CHMePh $\left.)\}\right]$ (8, bright yellow oil, 83\%).
 Elemental analyses were not performed due to an oily body of the compound. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) m / z:[\mathrm{M}-\mathrm{Cl}]^{-}$calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NAuCl}_{2}: 398$, found: 398. FT-IR (KBr , selected bands, cm^{-1}): 3033, 2996, 2936 and $2872(\mathrm{w}, \mathrm{C}-\mathrm{H})$, $2308(\mathrm{~s}, \mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 7.57-7.47\left(\mathrm{~m}, 3 H, m-\right.$ and $\left.p-\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 7.44(\mathrm{~d}$, ${ }^{3} J_{\mathrm{HH}} 6.5 \mathrm{~Hz}, 2 H, o-\mathrm{C}_{\mathrm{Ar}} \mathrm{H}$), 5.45 (quart, $\left.{ }^{3} J_{\mathrm{HH}} 6.7 \mathrm{~Hz}, 1 H, \mathrm{NCH}\right), 1.99 \mathrm{ppm}(\mathrm{d}$, $\left.{ }^{3} J_{\mathrm{HH}} 6.7 \mathrm{~Hz}, 3 H, \mathrm{Me}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 133.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 130.3\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 129.9$ $\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 125.8\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 114.0\left(\mathrm{t},{ }^{1} J_{\mathrm{CN}} 31.0 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{N}\right), 59.9(\mathrm{CH}), 23.2(\mathrm{Me})$.

Characterization of gold(III)-isocyanide complexes 5-8

All isocyanides complexes $5-8$ were characterized by ESI-MS, IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR spectroscopic techniques, while complexes 6 and 7 additionally by ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) elemental analysis, and $\mathbf{5}$ by single-crystal X-ray diffraction.

Complexes 6 and 7 gave satisfactory results of the C, H and N elemental analyses which are consistent with the proposed formulations of the (isocyanide)Au ${ }^{\text {III }}$ complexes $\left[\mathrm{AuCl}_{3}\left(\mathrm{CNR}^{1}\right)\right]$. In the case of $\mathbf{5}$ and $\mathbf{8}$, elemental analyses were unsatisfactory owing to their fast decomposition even in darkness under N_{2} atmosphere.

For complex 5, signals due to $\left[\mathrm{M}+\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}\right]^{-},\left[\mathrm{M}+\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{MeCN}^{-}\right.$in the ESI^{-} -MS , due to $\left[\mathrm{M}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{MeCN}\right]^{-}$in the $\mathrm{ESI}^{+}-\mathrm{MS}$ were observed. For complexes $\mathbf{6}$ and

7, signals due to $[\mathrm{M}+\mathrm{Cl}]^{-}$ions were evident in the $\mathrm{ESI}^{-}-\mathrm{MS}$ spectra. For complex 8, fragmentation ions $[\mathrm{M}-\mathrm{Cl}]$ and $[\mathrm{M}-\mathrm{Cl}-\mathrm{CNCHMePh}]$ in the $\mathrm{ESI}^{+}-\mathrm{MS}$, were identified.

The IR spectra of $\mathbf{5 - 8}$ contained one strong ($6-\mathbf{8}$) or medium (5) band in the range $2268-2297 \mathrm{~cm}^{-1}$ that was attributed to $v(\mathrm{C} \equiv \mathrm{N})$ stretching vibrations. These values are higher than those for the corresponding Au^{I} compounds $\left[\mathrm{AuCl}\left(\mathrm{CNR}^{1}\right)\right]\left(2308-2259 \mathrm{~cm}^{-1}\right.$ for $\mathrm{R}^{1}=\mathrm{Cy}, \mathrm{Xyl}, \mathrm{Bu}^{t}$, and $\left.(S)-\mathrm{CHMePh}\right)^{1,13}$ suggesting that that $\mathrm{Au}(\mathrm{III})$ center provides higher electrophilic activation of the isocyanide ligands when compared to $\mathrm{Au}(\mathrm{I})$. Observed values are comparable to those for $v(\mathrm{C} \equiv \mathrm{N})$ stretches of the known complex $\left[\mathrm{AuBr}_{3}\left(\mathrm{CNBu}^{t}\right)\right]$ $\left(2282 \mathrm{~cm}^{-1}\right)^{14}$. Bands in the $3050-2860 \mathrm{~cm}^{-1}$ range are characteristic for $v(\mathrm{C}-\mathrm{H})$ stretches.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}$, the methyl group from the Xyl fragment emerged as a singlet at 2.57 ppm , that is shifted by $c a .0 .1 \mathrm{ppm}$ to a lower field when compared to the corresponding Au^{I} complex $\mathbf{1}(2.47 \mathrm{ppm})$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$, the CH proton of the cyclohexyl ring was detected in the range of $4.38-4.30 \mathrm{ppm}$ as a broad multiplet (3.86-3.94 ppm for 2). The characteristic signal of the asymmetric group CH appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ as a quartet at $5.45 \mathrm{ppm}\left({ }^{3} J_{\mathrm{HH}} 6.7 \mathrm{~Hz}\right)$; this value is low-field shifted by $c a .0 .35 \mathrm{ppm}$ regarding starting complex 4 .

In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{5}$, the methyl group emerged at 18.2 ppm , while the CN group was not detected due to its low intensity and fast decomposition of $\mathbf{5}$ in solution (all the signals detected in the spectrum were shifted to lower field compared to $\left.[\mathrm{AuCl}(\mathrm{CNXyl})]^{1}\right)$. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{6}$, the CH carbon of the cyclohexyl group appeared at 58.0 ppm as a singlet (55.0 ppm for $\mathbf{2}$), CN group was found at 111.8 ppm as a triplet $\left({ }^{1} J_{\mathrm{NC}} 33 \mathrm{~Hz}\right)$, while for $\mathbf{2}$ the latter was not detected. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7, the CN carbon was detected as a triplet at $112.1 \mathrm{ppm}\left({ }^{1} J_{\mathrm{NC}} 29 \mathrm{~Hz}\right)$. Carbon resonances of the CH and $\mathrm{C} \equiv \mathrm{N}$ groups of complex $\mathbf{8}$ appeared as a singlet and a triplet at 59.9 and $114.0 \mathrm{ppm}\left({ }^{1} J_{\mathrm{CN}} 31.0 \mathrm{~Hz}\right)$, correspondingly.

The solid-state structure of $\mathbf{5}$ was established by single-crystal X-ray diffraction (Figures S1 and S2). Complex 5 possesses a square-planar geometry $\left(\tau_{4}=0.03\right)^{15}$ with the metal coordination environment comprising one isocyanide and three chloride ligands. The $\mathrm{Au}-\mathrm{Cl}[\mathrm{Au} 1-\mathrm{Cl} 12.2687(19), \mathrm{Au} 1-\mathrm{Cl} 2$ 2.2837(18), and Au1-Cl3 2.2868(18) \AA] and $\mathrm{Au}-\mathrm{C}$ $[1.954(7) \AA]$ distances are of typical values and similar to those in related $\mathrm{Au}(\mathrm{III})$ and $\mathrm{Au}(\mathrm{I})$ compounds. ${ }^{14,16}$ For the trans-placed chloride ligands, the $\mathrm{Au}-\mathrm{Cl}$ distances are slightly longer than for the remaining cis-chloride, presumably, due to the greater trans influence of the CNR ligands than that of $\mathrm{Cl} .{ }^{17}$ The $\mathrm{C} 1-\mathrm{N} 1$ bond $[1.143(9) \AA]$ is a typical CN triple bond for the isocyanide moieties. ${ }^{18}$ The $\mathrm{Au}-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$ fragment is almost linear and the molecule of $\mathbf{5}$ is roughly planar as shown by the angle $\left(7.41^{\circ}\right)$ between the least-square planes of the aromatic ring and the AuCl_{3} group. Molecules of $\mathbf{5}$ are gathered into dimers as a result of $\mathrm{Au} 1 \cdots \mathrm{Cl} 3$ intermolecular contacts of $3.353(2) \AA$ (Figure S2) leading to a shortest metal $\bullet \bullet$ metal distance of $3.9797(4) \AA$. Detailed theoretical evaluation of the character of these gold-halogen contacts by using DFT calculations followed by the topological analysis of the electron density distribution within the formalism of Bader's theory (QTAIM analysis) is provided below.

Figure S1. Crystal structure of $\mathbf{5}$ with the atomic numbering scheme (hydrogen labels are removed for simplicity). Thermal ellipsoids are drawn at the 25% probability level. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: Au1-Cl1 2.2687(19), Au1-Cl2 2.2837(18), Au1-Cl3 2.2868(18), Au1-C1 1.954(7), C1-N1 1.143(9), C1-Au1-C11 178.4(2), C1-Au1-Cl2 86.78(19), C1-Au1-Cl3 90.8(2), Cl1-Au1-Cl2 91.90(7), Cl2-Au1-Cl3 177.49(7), Au1-C1-N1 176.5(6), C1-N1-C2 178.9(7).

Figure S2. Packing diagram for complex 5.

DFT calculations for model isocyanide complexes [$\left.\mathrm{AuCl}_{3}(\mathrm{CNMe})\right]$ and $[\mathrm{AuCl}(\mathrm{CNMe})]$

We carried out theoretical DFT calculations (viz., geometry optimization procedure in gas phase, calculation of vibrational frequencies, and natural bond orbital (NBO) analysis) to compare reactivity of gold(III)- and gold(I)-isocyanide complexes toward nucleophilic attacks using $\left[\mathrm{AuCl}_{3}(\mathrm{CNMe})\right]$ and $[\mathrm{AuCl}(\mathrm{CNMe})]$ as model species. The composition and energies of the frontier molecular orbitals (FMOs) is one of the main factors determining the reactivity of isocyanide complexes in nucleophilic addition processes, and energy level of first unoccupied MO bearing $\pi^{*}(\mathrm{C} \equiv \mathrm{N})$ orbitals determine the activation of appropriate ligand (the lower the energy, the higher the activation). The energy level of this MO (viz., LUMO1, Figure S3) in $\left[\mathrm{AuCl}_{3}(\mathrm{CNMe})\right](-2.07 \mathrm{eV})$ is significantly lower than that in [$\mathrm{AuCl}(\mathrm{CNMe})](-1.47 \mathrm{eV})$, thereby simple qualitative MO consideration suggests that the $\mathrm{Au}(\mathrm{III})$ center is more potent activator of the isocyanide ligands toward the addition of nucleophiles. Another important factor effecting the reactivity of molecules is the charge distribution on reacting atoms, for our case, the charges on the C atoms of the $\mathrm{C} \equiv \mathrm{N}$ groups of isocyanide ligands. The calculated NBO charges on these C atoms in $\left[\mathrm{AuCl}_{3}(\mathrm{CNMe})\right]$ and [$\mathrm{AuCl}(\mathrm{CNMe})]$ are 0.44 and 0.30 , respectively. Thus, in terms of electrostatic arguments, the coordination of isocyanide ligand to $\mathrm{Au}(\mathrm{III})$ center should facilitate the nucleophilic attack at the C atom of the $\mathrm{C} \equiv \mathrm{N}$ group. Finally, the $v(\mathrm{C} \equiv \mathrm{N})$ vibration is the most analytically important characteristic frequency in the IR spectrum of isocyanide complexes. This frequency can be used as the indicator of the reactivity of these substrates toward nucleophilic attacks (the higher the frequency, the higher the activation. ${ }^{19}$ The calculated value of the unscaled normal mode frequency $v(\mathrm{C} \equiv \mathrm{N})$ in $\left[\mathrm{AuCl}_{3}(\mathrm{CNMe})\right]\left(2389 \mathrm{~cm}^{-1}\right)$ is greater than that in $[\mathrm{AuCl}(\mathrm{CNMe})]\left(2321 \mathrm{~cm}^{-1}\right)$. Thus, based on the basis of the criterion Δv, gold(III)isocyanide complexes more prone toward addition of a nucleophile. Thus, orbital, charge and
frequency arguments reveal that $\mathrm{Au}(\mathrm{III})$ center is better activator of CNR ligand in nucleophilic addition processes compare to $\mathrm{Au}(\mathrm{I})$.

Figure S3. Plots of first unoccupied MOs bearing $\pi^{*}(\mathrm{C} \equiv \mathrm{N})$ orbitals for [$\mathrm{AuCl}(\mathrm{CNMe})$] and $\left[\mathrm{AuCl}_{3}(\mathrm{CNMe})\right]$ complexes.

Addition of benzophenone hydrazone to gold(III)-bound isocyanides

Preparation of complexes 14 and 16. A solution of benzophenone hydrazone (13, $5 \mathrm{mg}, 0.025 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to a solution of freshly prepared $\mathbf{5}$ or $\mathbf{8}(11 \mathrm{mg}, 0.025 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at ca. $25^{\circ} \mathrm{C}$ to form a bright orange solution. The reaction mixture was left to stand at RT for ca. 15 min , a change of the reaction color to yellow was noted. Solvent was then removed under a flow of N_{2} to form the orange oil that was washed with hexane (two $2-\mathrm{mL}$ portions) and dried in vacuum. Yields: 60% (14) and 76% (16). Recrystallization of 14 from CDCl_{3} at RT under dinitrogen led to deposition of bright yellow crystals of $\mathbf{1 4}$ suitable for X-ray diffraction.

[$\left.\left.\mathbf{A u C l}_{\mathbf{3}} \mathbf{C} \mathbf{(\mathbf { N H X y l }) (\mathbf { N H N C P h }} \mathbf{2}^{2}\right)\right](\mathbf{1 4}$, yellow solid, $\mathbf{6 0 \%}$). Elemental analyses were not conclusive due to slow decomposition of compound at RT . $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) m / z:[\mathrm{M}-3 \mathrm{Cl}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Au}$: 523, found: 523. FT-IR (KBr , selected bands, cm^{-1}): 3284, 3217 (m , $\mathrm{N}-\mathrm{H}), 3012-2885(\mathrm{w}, \mathrm{C}-\mathrm{H}), 1574\left(\mathrm{~s}, \mathrm{C}_{\text {carbene }}=\mathrm{N}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 7.90(\mathrm{~s}, 1 H$, NH), $7.75(\mathrm{~s}, 1 \mathrm{H}, 2 \mathrm{NH}), 7.74-7.10\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 2.30(\mathrm{~s}, 6 H, \mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 136.0,135.7,131.7,131.4,130.9,129.5,129.3,129.0,128.9,128.8$, 128.3 and $128.2\left(\mathrm{C}_{\mathrm{ar}}\right), 16.7(\mathrm{Me}), \mathrm{C}_{\text {carbene }}=\mathrm{N}$ and $\mathrm{C}=\mathrm{N}$ signals were not detected due to the fast decomposition of the complex in solution.

$\left[\mathrm{AuCl}_{3} \mathbf{C}(\mathbf{N H}(\boldsymbol{S}) \mathbf{- C H M e P h})(\mathbf{N H N C P h} 2)\right](\mathbf{1 6}$, yellow solid, 76\%). Elemental analyses were not conclusive due to slow decomposition of compound at RT. MS (ESI ${ }^{+}$) m/z: $[\mathrm{M}-3 \mathrm{Cl}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Au}$: 523 , found 523. FT-IR $\left(\mathrm{KBr}\right.$, selected bands, $\left.\mathrm{cm}^{-1}\right)$: 3312, $3254(\mathrm{~m}, \mathrm{~N}-\mathrm{H}), 3035-2873(\mathrm{w}, \mathrm{C}-\mathrm{H}), 1571\left(\mathrm{~s}, \mathrm{C}_{\text {carbene }}=\mathrm{N}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\delta): 9.08(\mathrm{~s}, 1 H, \mathrm{NH}), 8.34\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}} 8.4 \mathrm{~Hz}, 1 H, \mathrm{NH}\right), 7.75-7.25\left(\mathrm{~m}, 15 H, \mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right)$,
5.67-5.57 (m, 1H, CH), $1.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}} 6.9 \mathrm{~Hz}, 3 H\right.$, Me). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right)$:
$162.7\left(\mathrm{C}_{\text {carbene }}=\mathrm{N}\right), 161.9(\mathrm{C}=\mathrm{N}), 139.2,135.1,132.0,131.7,130.2,130.0,129.2$, 129.0, 128.8, 128.7, 128.6, 126.9 (12s, Car), $59.3(\mathrm{CH}), 21.4(\mathrm{Me}) ;$

Preparation of complex 15. A solution of benzophenone hydrazone (13, 4.6 mg , $0.025 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added to a solution of $6(8.5 \mathrm{mg})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.2 \mathrm{~mL})$ in an NMR tube giving an orange solution of $\mathbf{1 5}$, whereupon ${ }^{1} \mathrm{H}$ NMR spectrum was recorded immediately. The pure compound is unstable after solvent evaporation.

$\left[\mathbf{A u C l}_{3} \mathbf{C}(\mathbf{N H C y})\left(\mathbf{N H N C P h}_{2}\right)\right]$ (15, NMR yield $\mathbf{7 6 \%}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 8.98(\mathrm{~s}, 1 H, \mathrm{NH}), 8.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}} 9 \mathrm{~Hz}, 1 H, \mathrm{NH}\right), 7.75-$ $7.31\left(\mathrm{~m}, 10 H, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 4.33-4.14(\mathrm{~m}, 1 H, \mathrm{CH}$ from Cy), 2.32-2.22, $1.94-1.65$ and $1.60-1.46\left(\mathrm{~m}, 2+4+4 H, \mathrm{CH}_{2}\right)$.

Characterization of the prepared carbene complexes 14-16

The $\mathrm{ESI}^{+/-}$-MS spectra of $\mathbf{1 4}$ and $\mathbf{1 6}$ displayed signals that were attributed to the fragmentation ions $[\mathrm{M}-3 \mathrm{Cl}]^{+}$, $\left[\mathrm{M}-3 \mathrm{Cl}+\mathrm{CNR}^{1}\right]^{+}$, and $\left[\mathrm{M}-\mathrm{CNR}^{1}-\mathrm{H}\right]^{-}$. The IR spectra of $\mathbf{1 4}$ and $\mathbf{1 6}$ indicated formation of the carbene moiety, thus, intense absorption at 1574 (14) and $1571 \mathrm{~cm}^{-1}(\mathbf{1 6})$ was assigned to $v\left(\mathrm{~N}-\mathrm{C}_{\text {carbene }}\right)$ and corresponding $v(\mathrm{~N}-\mathrm{H})$ bands emerge in the range of $3312-3035 \mathrm{~cm}^{-1} ; v(\mathrm{C}-\mathrm{H})$ stretching bands appeared in the $3035-2873 \mathrm{~cm}^{-1}$ range. In the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 4 - 1 6}$, resonances of both NH protons were detected in the range of $7.75-9.08 \mathrm{ppm}$. The aromatic protons were detected as multiplets in the range $7.10-7.75 \mathrm{ppm}$. The methyl groups of the Xyl fragment appeared as a singlet at 2.30 ppm and CH proton from cyclohexyl group was detected as a broad multiplet in the $\delta 4.14-4.33$ interval. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}$, the characteristic signal of the asymmetric CH proton appeared as a multiplet in the $5.57-5.67 \mathrm{ppm}$ range, whereas methyl protons were
detected as a doublet at 1.90 ppm . In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 6}$, two higher frequency signals were found. With the help of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ data, the resonances at $\delta 162.7$ and 161.9 in the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 6}$ were assigned to $\mathrm{C}_{\text {carbene }}-\mathrm{N}$ and $\mathrm{C}=\mathrm{N}$, correspondingly. To our knowledge, no data on ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of gold(III)-ADC complexes have been previously reported. This δ value for the $\mathrm{C}_{\text {carbene }}=\mathrm{NH}{ }^{13} \mathrm{C}$ signal is lower field relatively to those (199$206 \mathrm{ppm})$ reported for the series of gold(I)-ADC complexes, i.e. $\left[\mathrm{LAu}\left\{\mathrm{C}(\mathrm{NH} t-\mathrm{Bu})\left(\mathrm{NEt}_{2}\right)\right](\mathrm{L}\right.$ $=$ acac, $\left.\mathrm{C} \equiv \mathrm{CR}, \mathrm{NEt}_{3}\right) .{ }^{20}$ Also, the observed value of the carbene carbon resonance in $\mathbf{1 6}$ is shifted to a lower field, when compared to the corresponding $\operatorname{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})-\mathrm{ADC}$ complexes also generated via the nucleophilic addition of $\mathbf{1 3}$ to an isocyanide in cis$\left[\mathrm{MCl}_{2}\left(\mathrm{CNR}^{1}\right)\right](\mathrm{M}=\mathrm{Pd}, \mathrm{Pt} ; \delta 179.7-164.5 \mathrm{ppm}) .{ }^{21}$

Although complex $\mathbf{1 4}$ possesses low stability in the solid state, we could isolate crystals suitable for X-ray diffraction performed at 150 K in cryo-oil. The asymmetric unit of $\mathbf{1 4}$ contains one molecule of the complex and one of chloroform, and respective bond lengths and angles are discussed in the manuscript.

The solid-state structure of $\mathbf{1 4}$ exhibits intermolecular T-shaped $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving both the $\mathrm{C} 26-\mathrm{H} 8$ and the $\mathrm{C} 23-\mathrm{H} 10$ bonds of every molecule and the $\mathrm{C} 3-\mathrm{C} 8$ phenyl rings of adjacent ones (2.847 and $2.743 \AA$, in this order); such interactions give rise to infinite chains along the crystallographic a axis (Figure S4A). Additionally, the N1-H20 protons are involved in bifurcated intermolecular hydrogen-bonding to the Cl 1 and Cl 3 atoms of a neighboring molecule, assembling them in pairs (Figure S4B). $[\mathrm{H} \cdots A$ and $D-\mathrm{H} \cdots A(\AA$, $\left.{ }^{\circ}\right):$ N1-H20 $\left.\cdots \mathrm{Cl1} 2.68(7), 140(6), \mathrm{N} 1-\mathrm{H} 20 \cdots \mathrm{Cl} 32.81(7), 146(6)\right]$.

Figure S4. Intermolecular T-shaped $\mathrm{C}-\mathrm{H} \cdots \pi$ (A) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ (B) interactions in the molecular structure of $\mathbf{1 4}$. H -atoms not involved in such interactions are omitted for clarity.

Reaction of $\left[\mathrm{AuCl}_{3}\left(\mathrm{CNR}^{1}\right)\right](5-8)$ with amines

Reaction of complexes 5-8 with achiral primary (benzylamine $\mathbf{9}, \alpha$-methylbenzylamine 11) and secondary (morpholine 10) and chiral amine ($\alpha-(R)$-methylbenzylamine ($\boldsymbol{R} \mathbf{)}$-11) was studied at different conditions (i.e. varying temperature, solvent and molar ratio of the reagents).

Therefore, when solution of one or two equiv of $\mathbf{9}$ or $\mathbf{1 0}$ (in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added to freshly prepared 5-8 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (at $-74{ }^{\circ} \mathrm{C}$), a bright orange solution was formed. When warmed to the RT, color of the solution changed to yellow and white precipitate was formed. In each case, reaction mixture contained partially dissolved hydrochloride of the corresponding amine and product of reduction of the starting complex in solution (to $\mathbf{1 - 4}$, respectively) along with some yet unidentified species. However, in the ESI-MS spectra, traces of diaminocarbene species formed via nucleophilic addition of $\mathbf{9}$ or $\mathbf{1 0}$ to $\mathbf{1 - 4}$ (formed during reduction of 5-8), were detected by the ESI-MS.

To increase the life time of intermediates/products in the reaction of amines $\mathbf{9}$ or $\mathbf{1 0}$ with 5-8 and minimize the influence of solvent and air, we studied these reactions in dried degased aprotic nonpolar solvent (e.g. toluene, which was chosen for its relatively high ability to dissolve 5-8 and low melting temperature, i.e. ca. $-95^{\circ} \mathrm{C}$) under N_{2} atmosphere at $-74^{\circ} \mathrm{C}$. When solution of $\mathbf{9}$ or emulsion of $\mathbf{1 0}$ in dry toluene was added to the solution of 5-8 at $-74^{\circ} \mathrm{C}$, a bright orange mixture was formed. When warmed to the RT, a white precipitate of the corresponding amine hydrochloride was generated (detected by ESI-MS, IR and NMR spectroscopy). Evaporation of the solvent from a yellow solution formed after precipitation of the hydrochloride gave an oily residue which contained product of reduction of the starting complex 5-8 in solution to 1-4 along with some yet unidentified products.

When more sterically hindered and basic amine, such as α-methylbenzylamine (11) was used in a place of nucleophile, its reaction with any of 5-8 (1:1 ratio) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-74{ }^{\circ} \mathrm{C}$
led to the formation of the complex salt 12 (Scheme 2, Figure S5) in ca. 21-30\% yield based on Au. Change of the ratio gold(III)-isocyanide:amine to 2:3 increased the yield of $\mathbf{1 2}$ to ca. $40-42 \%$. In the solution, the presence of $\mathbf{1 2} \cdot \mathrm{HCl}$, respective gold(I)-isocyanide complexes 1-4, alongside with 1-phenylethan-1-imine (see Figure S6 for the HR-ESI-MS of this compound) and trace amounts of some yet unidentified species, were established using ESIMS, FT-IR, and ${ }^{1} \mathrm{H}$ NMR spectroscopy. Compound $\mathbf{1 2}$ precipitated from the reaction mixture as a bright yellow crystalline solid. Change of the solvent for undried MeCN or increasing of the temperature to $20-25^{\circ} \mathrm{C}$ led to decrease of the yield of $\mathbf{1 2}$ to $5-10 \%$. When dry toluene was used as a solvent and reaction was performed under N_{2} atmosphere, complex salt $\mathbf{1 2}$ was not formed but a white precipitate of $\mathbf{1 1 \cdot} \mathrm{HCl}$ was recovered in ca. 46% yield. When complex to amine ratio equal to 1:2 was used, complex salt $\mathbf{1 2}$ was also formed with a decreased yield ($5-13 \%$), and it was contaminated with excess of $\mathbf{1 1} \cdot \mathrm{HCl}$. In the ESI-MS spectra, traces of the diaminocarbene species formed via nucleophilic addition of $\mathbf{1 1}$ to $\mathbf{1 - 4}$ (formed during reduction of 5-8) were detected.

Reaction of optically pure $\alpha-(R)$-methylbenzylamine ($(\boldsymbol{R}) \mathbf{- 1 1}, 1$ equiv) with 5-8 in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-74^{\circ} \mathrm{C}$ under N_{2} afforded yellow oily residue (see below). Dropwise addition of CDCl_{3} to the latter led to precipitation of orange crystals of $\left\{(R)-\mathrm{H}_{3} \mathrm{NCHMePh}\right\}_{2}\left[\mathrm{AuCl}_{4}\right](\mathrm{Cl})$ $((\boldsymbol{R}) \mathbf{- 1 2})$ that were stable enough for X-ray diffraction.

Reaction of 11 with $5-8$. A solution of α-methylbenzylamine (11) or $(R)-(+)-\alpha-$ methylbenzylamine ((R)-11) $(9 \mathrm{mg}, 0.075 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and solution of freshly prepared 5-8 $(0.025 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were cooled to -74° in acetoneliquid nitrogen cooling bath and were mixed to form a bright orange solution. The reaction mixture was immediately analyzed by HR ESI-MS (see Supporting information) allowing the detection of gold(I)-isocyanides 1-4 and 1-phenylethan-1imine present. Afterwards, reaction mixture was left to warm up to RT until the
solution turned yellow (for ca. 40 min). After removal of the solvent under a flow of N_{2} the mixture of crystalline solid and an oily residue (12) or an oily residue ((\boldsymbol{R})-12) was obtained. It was washed with cold CHCl_{3} (two $2-\mathrm{mL}$ portions) to give bright yellow crystalline powder of $\mathbf{1 2}$ (or (\boldsymbol{R})-12) suitable for X-ray diffraction studies, that was further dried under dinitrogen at RT. Yield was $40-42 \%$ based on the metal. Analytical data obtained for $\mathbf{1 2}$ and (R)-12 were comparable. Application of the other solvents (benzene, toluene, tetrahydrofurane, diethyl ether) in the place of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to a broad mixture of yet unidentified products.
 N 4.24; found: C 30.38, H 3.72, N 4.25\%. HRMS (ESI $) ~ m / z:\left[\mathrm{NH}_{3} \mathrm{CHMePh}\right]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}$: 122.0964, found: 122.0968; $\left[2\left(\mathrm{NH}_{3} \mathrm{CHMePh}\right)+\mathrm{Cl}\right]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{Cl}: 279.1628$, found: 279.1623. $\mathrm{HRESI}^{-}-\mathrm{MS}, \mathrm{m} / \mathrm{z}:\left[\mathrm{AuCl}_{4}\right]^{-}$calcd. for AuCl $_{4}: 338.8396$, found: 338.8385 . FT-IR (KBr , selected bands, cm^{-1}): 3199 and 3151 (s, N-H), 3000 and 2919 (s, C-H), 1592, 1581, 1494 and 1385 (s, $\mathrm{C}=\mathrm{C}$), 763 and 698 $(\mathrm{s}, \delta(\mathrm{C}-\mathrm{H})) .{ }^{\mathrm{I}} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 7.73\left(\mathrm{~s}, \mathrm{br}, 2 H, \mathrm{NH}_{2}\right), 7.57-7.40\left(\mathrm{~m}, 5 H, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right)$, $4.58(\mathrm{~m}, \mathrm{br}, 1 H, \mathrm{CH}), 1.75\left(\mathrm{~d}, 3 H,{ }^{3} J_{\mathrm{HH}} 6.4 \mathrm{~Hz}, \mathrm{Me}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl} 2, \delta\right): 136.8$ $\left(\mathrm{C}_{\mathrm{ar}}\right), 129.6,129.4$ and $127.1\left(\mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 52.8(\mathrm{CH}), 20.3(\mathrm{Me})$.

Characterization of $\mathbf{1 2}$. Complex salts $\mathbf{1 2}$ and ($\boldsymbol{R} \mathbf{)} \mathbf{- 1 2}$ were characterized by elemental analyses, HRESI-MS, IR and NMR spectroscopic techniques and X-ray diffraction for (\boldsymbol{R})12. Compounds $\mathbf{1 2}$ and (\boldsymbol{R})-12 gave satisfactory results of the C, H and N elemental analyses that are consistent with the proposed formulations. For both complex $\mathbf{1 2}$ and $(\boldsymbol{R}) \mathbf{- 1 2}$, signals due to $\left[\mathrm{NH}_{3} \mathrm{CHMePh}\right]^{+}$and $\left[\mathrm{NH}_{3} \mathrm{CHMePh}+\mathrm{Cl}\right]^{+}$in the $\mathrm{HRESI}{ }^{+}-\mathrm{MS}$, and due to $\left[\mathrm{AuCl}_{4}\right]^{-}$in the HRESI ${ }^{-}-\mathrm{MS}$, were observed. The IR spectra of $\mathbf{1 2}$ and (\boldsymbol{R}) - $\mathbf{1 2}$ contained four strong bands
in the range $1385-1592 \mathrm{~cm}^{-1}$ that were attributed to $v(\mathrm{C}=\mathrm{C})$ stretching vibrations, and two strong bands in the $3151-3199$ range due to $v(\mathrm{~N}-\mathrm{H})$. Bands in the $2919-3000 \mathrm{~cm}^{-1}$ range are characteristic for $v(\mathrm{C}-\mathrm{H})$ stretches, while corresponding $\delta(\mathrm{C}-\mathrm{H})$ were detected in the 698763 range. Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show all expected resonances and support the formulation of $\mathbf{1 2}$ and (\boldsymbol{R})-12.

The structure of (\boldsymbol{R})-12 was determined by single-crystal X-ray diffraction (Figure S5). The crystal of $(\boldsymbol{R}) \mathbf{- 1 2}$ is built up from two protonated α-methylbenzylamine cations, one [$\left.\mathrm{AuCl}_{4}\right]^{-}$anion and one Cl^{-}anion disordered by two positions. In both cations all bond lengths and angles are equal within $3 \sigma .\left[\mathrm{AuCl}_{4}\right]^{-}$possesses a square-planar geometry around the metal center. $\mathrm{All} \mathrm{Au}-\mathrm{Cl}$ distances (2.273(5)-2.280(5) \AA) have typical values for $\mathrm{Au}-\mathrm{Cl}$, and are as observed in related $\mathrm{Au}(\mathrm{III})$ and $\mathrm{Au}(\mathrm{I})$ compounds. ${ }^{14,16 \mathrm{a}-\mathrm{e}, 22}$

Figure S5. Crystal structure of (\boldsymbol{R})-12 with atomic numbering scheme (hydrogen labels are removed for simplicity). Thermal ellipsoids are drawn at the 11% probability level. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right):$ Au1- $\mathrm{Cl1} 2.278(5), \mathrm{Au} 1-\mathrm{Cl} 22.273(5)$, $\mathrm{Au} 1-\mathrm{Cl} 3$ 2.279(4), Au1-Cl4 2.280(5), C7-N1 1.143(9), C11-N2 1.143(9), Cl2-Au1-Cl1 89.8(2), Cl2-Au1-Cl4
179.15(19), Cl1-Au1-Cl4 90.8(2), Cl2-Au1-Cl3 90.68(19), Cl1-Au1-Cl3 179.5(13), C4-Au1-Cl3 88.7(2).

Figure S6. HR-ESI ${ }^{+}$-MS of 1-phenylethan-1-imine (120.0815 [M + H $]^{+}$[calcd. 120.0813]) and 1-phenylethan-1-amine (122.0972 $[\mathrm{M}+\mathrm{H}]^{+}$[calcd. 122.0970]) detected in the reaction mixture.

Reactions of $\left[\mathrm{AuCl}_{3}\left(\mathrm{CNR}^{1}\right)\right]$ with other $\mathbf{N H}$-nucleophiles

We have tested complexes 5-8 in the reactions with other nucleophiles, namely: p chloroaniline, benzophenone imine, methylhydrazine, benzylhydrazine, carbohydrazide, benzhydrazide and 1,3-iminoisoindolinone. All the reactions studied led to decomposition of the starting complexes forming either metal gold or the corresponding [$\mathrm{AuCl}\left(\mathrm{CNR}^{1}\right)$] complexes (in the cases of p-chloroaniline, benzophenone imine, benzhydrazide and 1,3iminoisoindolinone). No formation of the carbene products was observed for any of those.

It should be mentioned that all nucleophiles (namely, p-chloroaniline, benzophenone imine, methylhydrazine, benzylhydrazine, carbohydrazide, benzhydrazide and 1,3iminoisoindolinone) used in this work were tested in the reaction with $\left[\mathrm{AuCl}\left(\mathrm{CNR}^{1}\right)\right]$ species and in all the cases nucleophilic addition did not occur in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ even after 6 h at $40^{\circ} \mathrm{C}$ but led to partial decomposition of the starting material releasing metal-containing black precipitate.

Theoretical evaluation of the bonding situation in dimers 5,14 , and $(R)-12$

Inspection of the crystallographic data suggests the presence of short contacts $\mathrm{Au} \cdot \cdots \mathrm{Au}$ (aurophilic interactions) in dimers 5, 14, and (\boldsymbol{R})-12 in solid state (for more detailed discussion about the identification of such contacts, see Ref. ${ }^{23}$). Indeed, the interatomic distances between the gold atoms in these associates ($3.98,4.30$, and $4.21 \AA$, respectively) falls within the range of sum of their van der Waals radii defined by different approaches (the smallest $\{3.32 \AA\}$ proposed by Bondi 24, and the largest $\{4.86 \AA$ \} proposed by Allinger et al. ${ }^{25}$). In order to study the bonding situation and to confirm or deny assumption about the existence of aurophilic interactions in dimers $\mathbf{5}, \mathbf{1 4}$, and $(\boldsymbol{R}) \mathbf{- 1 2}$ we carried out theoretical DFT calculations and performed topological analysis of the electron density distribution within the formalism of Bader's theory (QTAIM analysis). The results are summarized in Table S2, the contour line diagrams of the Laplacian distribution $\nabla^{2} \rho(\mathbf{r})$, bond paths, and selected zero-flux surfaces for dimers 5, 14, and (R)-12 are shown in Figure S7.

Table S2. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^{2} \rho(\mathbf{r})$, energy density $-H_{b}$, potential energy density $-\mathrm{V}(\mathbf{r})$, and Lagrangian kinetic energy $-\mathrm{G}(\mathbf{r})$ (Hartree) at the bond critical points (3, -1), corresponding to different contacts in dimers 5, $\mathbf{1 4}$, and (\boldsymbol{R})-12, bond lengths (l, \AA) and appropriate Wiberg bond indices (WI) as well as energies of these interactions $\mathrm{E}_{\mathrm{int}}(\mathrm{kcal} / \mathrm{mol})$, defined by two methods. ${ }^{\text {a }}$

Contact	$\rho(\mathbf{r})$	$\nabla^{2} \rho(\mathbf{r})$	H_{b}	V(r)	G(r)	l	WI	$\mathrm{E}_{\text {int }}{ }^{\text {b }}$	$\mathrm{E}_{\text {int }}{ }^{\text {c }}$
5									
$A u \cdots \cdot A u$	BCP not found					3.98	0.02	---	---
	$B C P$ not found						0.01	---	---
$\mathrm{Au} \cdot \bullet \cdot \mathrm{Cl}$	0.014	0.045	0.001	-0.009	0.010	3.35	0.06	2.8	2.7
	0.013	0.041	0.001	-0.007	0.009		0.06	2.2	2.4
$\mathrm{Au}-\mathrm{Cl}$	0.107	0.196	-0.035	-0.118	0.084	2.29	0.75	37.0	22.6
	0.101	0.226	-0.030	-0.110	0.083		0.71	34.5	22.3
14									
$A u \cdots \cdot A u$	BCP not found					4.30	0.01	---	---
	$B C P$ not found						0.01	---	---
$\mathrm{Au} \cdot \bullet \cdot \mathrm{Cl}$	0.010	0.034	0.001	-0.006	0.007	3.51	0.05	1.9	1.9
	0.010	0.028	0.001	-0.005	0.006		0.05	1.6	1.6
$\mathrm{Au}-\mathrm{Cl}$	0.103	0.201	-0.032	-0.115	0.082	2.30	0.72	36.1	22.1
	0.097	0.230	-0.029	-0.107	0.082		0.68	33.6	22.1
(R)-12									
$A u \cdots \cdot A u$	BCP not found					4.21	0.02	---	---
	$B C P$ not found						0.01	---	---
$\mathrm{Au} \cdot \bullet \cdot \mathrm{Cl}$	0.008	0.027	0.001	-0.004	0.005	3.63	0.03	1.3	1.4
	0.008	0.022	0.001	-0.004	0.005		0.03	1.3	1.4
$\mathrm{Au}-\mathrm{Cl}$	0.107	0.208	-0.034	-0.120	0.086	2.28	0.76	37.7	23.2
	0.101	0.232	-0.031	-0.111	0.085		0.71	34.8	22.9

[^0]

Figure S7. Contour line diagrams of the Laplacian distribution $\nabla^{2} \rho(\mathbf{r})$, bond paths and selected zero-flux surfaces for dimers $\mathbf{5}(\mathbf{A}), \mathbf{1 4}(\mathbf{B})$, and (R)-12(C). Bond critical points (3, $-1)$ are shown in blue, nuclear critical points $(3,-3)$ - in pale brown, ring critical points (3, $+1)$ - in orange, length unit $-\AA$.

The QTAIM analysis shows the presence of two bond critical points $(3,-1)$ (BCPs) for covalent bonds $\mathrm{Au}-\mathrm{Cl}$ and two BCPs for $\mathrm{Au} \cdot \cdots \mathrm{Cl}$ non-covalent interactions, but no BCPs for $\mathrm{Au} \cdots \mathrm{Au}$ contacts in all studied dimers. Thus, our assumption about the presence of aurophilic interactions in dimers $\mathbf{5}, \mathbf{1 4}$, and $(\boldsymbol{R}) \mathbf{- 1 2}$ is not confirmed theoretically from the QTAIM formalism's point of view. The magnitudes of the electron density, values of the Laplacian and energy density, the ratio $-\mathrm{G}(\mathbf{r}) / \mathrm{V}(\mathbf{r})$ in BCPs for $\mathrm{Au}-\mathrm{Cl}$ and $\mathrm{Au} \cdots \mathrm{Cl}$ contacts as well as
appropriate Wiberg bond indices (WI) are typical for covalent bonds M-L in coordination complexes and for non-covalent electrostatic interactions, respectively. We have defined energies for these contacts according to the procedures proposed by Espinosa et al. ${ }^{26}$ and Vener et al. ${ }^{27}$ (Table S2), and one can state that the relativistic and non-relativistic approaches gives very similar estimates. Results of theoretical calculations led to a conclusion that weak $\mathrm{Au} \cdots \cdot \mathrm{Cl}$ non-covalent electrostatic interactions and not the aurophilic interactions are responsible for the stabilization of dimeric associates $\mathbf{5}, \mathbf{1 4}$, and $(\boldsymbol{R}) \mathbf{- 1 2}$ in solid state.

Table S3. Cartesian atomic coordinates of model species.

Atom	X	Y	Z
5			
Au	6.272028	5.110382	5.924476
Cl	6.779241	5.185342	8.134593
Cl	4.037719	4.942848	6.364831
Cl	8.486836	5.297713	5.388415
N	5.446292	5.079251	2.941760
C	5.789288	5.071058	4.031420
C	5.000180	5.094270	1.616845
C	3.603426	5.157078	1.425433
C	3.227349	5.148886	0.108004
H	2.299213	5.180290	-0.091963
C	4.116570	5.095635	-0.949576
H	3.786450	5.092905	-1.840338
C	5.477093	5.046481	-0.727153
H	6.084116	5.010981	-1.456444
C	5.948444	5.047847	0.591346
C	7.414665	4.967289	0.920704
H	7.696192	5.796081	1.362342
H	7.929359	4.845769	0.095171
H	7.573859	4.208132	1.519535
C	2.641744	5.239001	2.545034
H	2.809619	4.505787	3.172738
H	1.728742	5.168001	2.126429
H	2.750179	6.096466	3.006990
Au	7.920225	8.543518	4.768945
Cl	7.413012	8.468558	2.558829
Cl	10.154534	8.711052	4.328590
Cl	5.705417	8.356187	5.305006
N	8.745961	8.574649	7.751661
C	8.402965	8.582842	6.662002
C	9.192073	8.559630	9.076576
C	10.588827	8.496822	9.267988
C	10.964904	8.505014	10.585418
H	11.893040	8.473610	10.785385
C	10.075683	8.558265	11.642997
H	10.405803	8.560995	12.533759
C	8.715160	8.607419	11.420574
H	8.108137	8.642919	12.149865
C	8.243809	8.606053	10.102075
C	6.777588	8.686611	9.772718
H	6.496061	7.857819	9.331080
H	6.262894	8.808131	10.598250
H	6.618394	9.445768	9.173886
C	11.550509	8.414899	8.148387

H	11.382634	9.148113	7.520683
H	12.463511	8.485899	8.496993
H	11.442074	7.557434	7.686431
14			
Au	5.667245	1.717367	1.123982
Cl	7.641980	1.744611	2.240572
Cl	4.474517	1.126512	3.030607
Cl	3.758207	1.599877	-0.153261
N	7.022930	3.540305	-0.667115
N	6.751745	4.489589	0.305356
C	7.766839	1.807755	-2.621781
C	6.693992	2.276012	-0.505685
C	7.108252	5.692868	-0.001945
C	6.935988	6.738641	1.024984
C	7.054932	8.080977	0.694344
H	7.209054	8.333552	-0.208109
C	6.952131	9.055803	1.672649
H	7.023690	9.973870	1.437312
C	6.745327	8.695387	2.983540
H	6.681724	9.366555	3.652600
C	6.629263	7.362983	3.331684
H	6.485938	7.118922	4.238027
C	6.721513	6.392415	2.361159
H	6.637520	5.477186	2.602331
C	7.733204	6.024904	-1.332285
C	9.090523	6.179571	-1.458706
H	9.640895	6.132745	-0.684619
C	9.672362	6.403766	-2.697633
H	10.613653	6.505932	-2.775431
C	8.870891	6.474714	-3.812085
H	9.257918	6.630800	-4.665914
C	7.514331	6.322886	-3.697333
H	6.966972	6.362617	-4.471420
C	6.937261	6.110042	-2.454516
H	5.994966	6.024904	-2.376718
N	7.011497	1.423217	-1.448981
C	7.056744	2.434935	-3.658434
C	7.813679	2.891840	-4.747601
H	7.387841	3.354421	-5.459450
C	9.092101	2.684672	-4.788445
H	9.562967	2.984073	-5.556697
C	9.818418	2.064587	-3.800415
H	10.756576	1.946813	-3.891827
C	9.127612	1.593492	-2.615946
C	9.824350	0.976244	-1.482045

H	9.640761	1.487070	-0.667115
H	10.789921	0.971988	-1.655145
H	9.509498	0.055339	-1.367294
C	5.584959	2.620819	-3.640930
H	5.303573	3.083400	-4.457805
H	5.333203	3.155767	-2.859064
H	5.144822	1.746740	-3.592306
H	7.471912	3.760244	-1.361459
H	6.741127	0.681101	-1.400358
Au	4.378155	-1.717367	-1.123982
Cl	2.403420	-1.744611	-2.240572
Cl	5.570883	-1.126512	-3.030607
Cl	6.287193	-1.599877	0.153261
N	3.022470	-3.540305	0.667115
N	3.293655	-4.489589	-0.305356
C	2.278561	-1.807755	2.621781
C	3.351408	-2.276012	0.505685
C	2.937148	-5.692868	0.001945
C	3.109412	-6.738641	-1.024984
C	2.990468	-8.080977	-0.694344
H	2.836346	-8.333552	0.208109
C	3.093269	-9.055803	-1.672649
H	3.021710	-9.973870	-1.437312
C	3.300073	-8.695387	-2.983540
H	3.363676	-9.366555	-3.652600
C	3.416137	-7.362983	-3.331684
H	3.559462	-7.118922	-4.238027
C	3.323887	-6.392415	-2.361159
H	3.407880	-5.477186	-2.602331
C	2.312196	-6.024904	1.332285
C	0.954877	-6.179571	1.458706
H	0.404505	-6.132745	0.684619
C	0.373038	-6.403766	2.697633
H	-0.568253	-6.505932	2.775431
C	1.174509	-6.474714	3.812085
H	0.787482	-6.630800	4.665914
C	2.531069	-6.322886	3.697333
H	3.078428	-6.362617	4.471420
C	3.108139	-6.110042	2.454516
H	4.050434	-6.024904	2.376718
N	3.033903	-1.423217	1.448981
C	2.988656	-2.434935	3.658434
C	2.231721	-2.891840	4.747601
H	2.657559	-3.354421	5.459450
C	0.953299	-2.684672	4.788445

H	0.482433	-2.984073	5.556697
C	0.226982	-2.064587	3.800415
H	-0.711176	-1.946813	3.891827
C	0.917788	-1.593492	2.615946
C	0.221050	-0.976244	1.482045
H	0.404639	-1.487070	0.667115
H	-0.744521	-0.971988	1.655145
H	0.535902	-0.055339	1.367294
C	4.460441	-2.620819	3.640930
H	4.741827	-3.083400	4.457805
H	4.712197	-3.155767	2.859064
H	4.900578	-1.746740	3.592306
H	2.573488	-3.760244	1.361459
H	3.304273	-0.681101	1.400358
(R)-12			
Cl	9.160024	3.548348	16.208939
Cl	10.163459	1.210961	18.174710
Cl	11.053819	3.434226	20.353594
Cl	10.085108	5.758933	18.400360
Au	10.108791	3.481777	18.280333
Cl	8.647176	3.548348	23.799961
Cl	7.643741	1.210961	21.834190
Cl	6.753381	3.434226	19.655306
Cl	7.722092	5.758933	21.608540
Au	7.698409	3.481777	21.728567
$\left[\mathrm{AuCl}_{3}(\mathrm{CNMe})\right]$			
Cl	1.225501	1.476962	-2.703958
Au	0.113427	0.515475	-0.930022
Cl	2.077224	0.480478	0.359765
C	-0.854049	-0.323738	0.619701
Cl	-1.908000	0.496599	-2.126908
N	-1.408344	-0.803541	1.505007
C	-2.084562	-1.393882	2.601081
H	-2.753363	-0.656893	3.049631
H	-2.665945	-2.247397	2.247206
H	-1.352302	-1.725208	3.339490
[$\mathrm{AuCl}(\mathrm{CNMe}$)]			
Au	-0.022973	0.000487	0.000603
Cl	2.273349	-0.001999	0.000613
C	-1.981890	0.001730	0.000146
N	-3.140531	0.001712	-0.000852
C	-4.554636	0.000309	-0.001954
H	-4.921004	-0.728879	-0.727873
H	-4.923476	0.992693	-0.270432
H	-4.922936	-0.264095	0.991701

References for Supplementary Information

1. A. S. K. Hashmi, T. Hengst, C. Lothschutz and F. Rominger, Adv. Synth. Catal., 2010, 352, 1315-1337.
2. Bruker APEX2 \& SAINT. Bruker, AXS Inc., Madison, Wisconsin, USA, 2004.
3. G. M. Sheldrick, SADABS - Bruker AXS scaling and absorption correction, 2008.
4. L. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.
5. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2007, 120, 215-241.
6. M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010. 7. I. V. Alabugin, K. M. Gilmore and P. W. Peterson, Wiley Interdisciplinary Reviews: Comp. Mol. Sci., 2011, 1, 109-141.
7. (a) F. E. Jorge, A. Canal Neto, G. G. Camiletti and S. F. Machado, J. Chem. Phys., 2009, 130, 064108; (b) A. Canal Neto and F. E. Jorge, Chem. Phys. Lett., 2013, 158-162; (c) C. L. Barros, P. J. P. de Oliveira, F. E. Jorge, A. Canal Neto and M. Campos, Mol. Phys., 2010, 108, 1965-1972.
8. D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theor. Chim. Acta, 1990, 123-141.
9. R. F. W. Bader, Chem. Rev., 1991, 91, 893-928.
10. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
11. E. D. Glendening, C. R. Landis and F. Weinhold, Wiley Interdisciplinary Reviews: Comp. Mol. Sci., 2012, 2, 1-42.
12. (a) J. Wilton-Ely, H. Ehlich, A. Schier and H. Schmidbaur, Helv. Chim. Acta, 2001, 84, 3216-3232; (b) R. Heathcote, J. A. S. Howell, N. Jennings, D. Cartlidge, L. Cobden, S. Coles and M. Hursthouse, Dalton Trans., 2007, 1309-1315.
13. D. Schneider, O. Schuster and H. Schmidbaur, Organometallics, 2005, 24, 3547-3551.
14. (a) A. W. Addison, N. T. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349-1356; (b) L. Yang, D. R. Powell and R. P. Houser, Dalton Trans., 2007, 955-964.
15. (a) S. Gaillard, A. M. Z. Slawin, A. T. Bonura, E. D. Stevens and S. P. Nolan, Organometallics, 2010, 29, 394-402; (b) S. F. Zhu, R. X. Liang, L. J. Chen, C. Wang, Y. W. Ren and H. F. Jiang, Tetrahedron Lett., 2012, 53, 815-818; (c) G. Bandoli, D. A. Clemente, Marangon G. and C. L., J. Chem. Soc.-Dalton Trans., 1973, 886-889; (d) R. J. Staples, T. Grant, J. P. Fackler and A. Elduque, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 1994, 50, 39-40; (e) T. S. Teets and D. G. Nocera, J. Am. Chem. Soc., 2009, 131, 7411-7420; (f)
H. Ecken, M. M. Olmstead, B. C. Noll, S. Attar, B. Schlyer and A. L. Balch, J. Chem. Soc.Dalton Trans., 1998, 3715-3720; (g) R. Y. Liau, T. Mathieson, A. Schier, R. J. F. Berger, N. Runeberg and H. Schmidbaur, Z.Naturforsch.(B), 2002, 57, 881-889.
16. (a) V. Y. Kukushkin, Russ J Inorg Chem (Engl Transl), 1988, 33, 1085-1089; (b) J. A. Davies, C. M. Hockensmith, V. Y. Kukushkin and Y. N. Kukushkin, Synthetic Coordination Chemistry: Principles and Practice, World Scientific Pub Co Inc, Singapore-New Jersey,

1997; (c) J. A. Vicente, A. Arcas, J. M. Fernández-Hernández, D. Bautista and P. G. Jones, Organometallics, 2005, 24, 2516-2527; (d) K. M. Anderson and A. G. Orpen, Chem. Coттии., 2001, 2682-2683.
18. H. F. Allen, O. Kennard, D. G. Watson, L. Brammer, A. Guy Orpen and T. Taylor, J. Chem. Soc. Perkin Trans 2, 1987, 1987, S1-S19.
19. R. A. Michelin, A. J. L. Pombeiro and M. F. C. Guedes da Silva, Coord. Chem. Rev., 2001, 218, 75-112.
20. J. Vicente, M. T. Chicote, M. D. Abrisqueta, M. M. Alvarez-Falcón, F. J. Hernández, M. C. R. d. Arellano and P. G. Jones, Organometallics, 2003, 22, 4327-4333.
21. K. V. Luzyanin, M. F. C. Guedes da Silva, V. Y. Kukushkin and A. J. L. Pombeiro, Inorg. Chim. Acta, 2009, 362, 833-838.
22. H. Ecken, M. M. Olmstead, B. C. Noll, S. Attar, B. Schlyer and A. L. Balch, J. Chem. Soc.-Dalton Trans., 1998, 3715-3720.
23. A. N. Chernyshev, M. V. Chernysheva, P. Hirva, V. Y. Kukushkin and M. Haukka, Dalton Trans., 2015, 14523-14531.
24. (a) A. Bondi, J. Phys. Chem., 1964, 68, 441-451; (b) A. Bondi, J. Phys. Chem., 1966, 70, 3006-3007.
25. N. L. Allinger, X. Zhou and J. Bergsma, J. Mol. Struct. (THEOCHEM), 1994, 312, 6983.
26. E. Espinosa, E. Molins and C. Lecomte, Chem. Phys. Lett., 1988, 285, 170-173.
27. M. V. Vener, A. N. Egorova, A. V. Churakov and V. G. Tsirelson, J. Comput. Chem., 2012, 33, 2303-2309.

[^0]: ${ }^{\text {a }}$ Relativistic approach - normal text, non-relativistic - italics (for details see Computational Details section in the main text).
 ${ }^{5} \mathrm{E}_{\text {int }}=-\mathrm{V}(\mathbf{r}) / 2\left(\right.$ see Ref. $\left.{ }^{26}\right)$
 ${ }^{\mathrm{c}} \mathrm{E}_{\text {int }}=0.429 \mathrm{G}(\mathbf{r})\left(\right.$ see Ref. $\left.{ }^{27}\right)$

