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Fig. S1. 1H NMR and 13C NMR spectrum of compound 1 (DMSO-d6).
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Fig. S2. Partial 1H-1H COSY NMR spectrum of compound 1 (in DMSO-d6).

Fig. S3. HRMS-ESI spectra of compound 1.
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Fig. S4. The fluorescent intensity of probe 1 (10 μM) in various solvents. ( λex: 485 nm).

Fig. S5: The influence of water content to the fluorescent intensity of probe 1 (10 μM). ( λex: 485 nm).
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Fig. S6. Absorption (left) and emission (right) spectra of compound 1 (1×10-5 M) in DMF/0.01 M PBS buffer (v/v, 4:1, 

pH 7.4).

Fig. S7. Reaction time profile of probe 1 (10 µM) in the presence of Au3+ (200 µM). The fluorescence intensity ratio 

(I610/I555) of probe 1 was continuously monitored at time intervals in DMF/0.01 M PBS buffer (v/v, 4:1, pH 7.4).  ( λex: 

485 nm).
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Fig. S8. Effect of pH on the fluorescence intensity of 1 (10 μM) in DMF/0.01 M PBS buffer (v/v, 4:1, pH 7.4) in the 

absence (black dot) and presence of Au3+ (red dot). ( λex: 485 nm).

Fig. S9. Emission spectra of 1 (10 μM) in DMF/0.01 M PBS buffer (v/v, 4:1, pH 7.4) (black line); upon addition of 
200 μM of Au3+ under the inert gas (red line); upon addition of 200 μM of Au3+ under the atmosphere of oxygen (blue 
line). λex: 485 nm.

Fig. S10. HRMS-ESI spectra of DPP-AL.
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Synthesis of DPP-AC: AuCl3 (10 mmol %) was added to the solution of 1 (25 mg, 0.031 mmol) in 20 ml DMF-H2O 

(v/v = 4:1), and the reaction mixture was stirred for 4h.  The solvent was evaporated and the mixture was purified by 

column chromatography (CH2Cl2/CH3OH = 20/1) to give the compound DPP-AC (16 mg, 65%). 1H NMR (400 MHz, 

CDCl3/CD3OD)  (ppm) 8.19 (d, J = 8.4 Hz, 4H), 8.05 (d, J = 8.4 Hz, 4H), 3.94 (t, J = 5.2 Hz, 4H), 3.72 (t, J = 5.2 Hz, 

4H), 3.57-3.55 (m, 12H), 3.50-3.48 (m, 4H), 3.37 (s, 6H). 13C NMR (100 MHz, CDCl3/CD3OD)  (ppm) 167.8, 162.7, 

148.4, 132.6, 131.2, 130.1, 129.9, 110.8, 71.8, 70.5, 68.8, 59.0, 42.5. HRMS-ESI: m/z calcd (%) for C34H41N2O12:  

669.2659 [M+H+], found: 669.2665.

The partial 1H NMR of probe 1 and the isolated DPP-AC were shown in Fig. S11. The resonance signals 

corresponding to semithiocarbazone moiety protons (Hc, Hd, He, Hf, Hg and Hh at  8.23, 7.57, 7.40, 7.24, 12.04, and 

10.27 ppm, respectively) of 1 disappeared, and the two doublet resonance signals which indentified as meso-aryl 

protons (Ha and Hb) of 1 downfield shifted from 8.02 to 8.05 and from 8.13 to 8.19, respectively.  On the other hand, 

13C resonance peaks of C which indentified as carboxylic acid carbon of DPP-AC appeared at 167.8 (Fig. S12).  

Mass spectral analysis of the resulting mixture had shown a corroborative evidence for the product DPP-AC formation 

at m/z obsd 669.2665 (M+H+) (calcd 669.2659 for (M+H+)) (Fig. S13).

Fig. S11. (a) Synthesis route of DPP-AC; (b) Partial 1H-NMR of 1 in DMSO-d6; (c) Partial 1H-NMR of DPP-AC in 

CDCl3/CD3OD.
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Fig. S12. 1H NMR and 13C NMR spectrum of DPP-AC (CDCl3/CD3OD).

S8



Fig. S13. HRMS-ESI spectra of DPP-AC.

Fig. S14. The optimized ground-state and excited-state geometries of probe 1 and selected C=N or N-N or C-N or C-S 

or C=S bond lengths (in Å).

Fig. S15. The optimized ground-state and excited-state geometries of product DPP-AC.
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Fig. S16. The frontier molecular orbitals (FMOs) involved in the vertical excitation and emission of 1 (enol isomer) 
and 1 (keto isomer).  CT stands for conformation transformation.  Excitation and radiative processes are marked as 
solid lines and the non-radiative processes are marked by dotted lines.  For details please refer to Fig. S11 and Table 

S1-S2.
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Table S1. Comparison of the present probe with existing Au3+ probes
Type of probe LOD Reference

turn-on 0.50 μM Chem. Commun. 2009, 7218-7220

turn-on 50 nM Org. Lett. 2009, 11, 5610-5613

ratiometric No data for Au3+ Org. Lett. 2010, 12, 5310-5313

turn-on 64 ppb Org. Lett. 2010, 12, 932-934

turn-on 0.4 ppm (Au+) Org. Lett. 2010, 12, 401-403

turn-on 48 nM Chem. Commun. 2011, 47, 12506-12508

turn-on 290 nM Chem. Commun. 2011, 47, 4703-4705

ratiometric (FRET mechanism) 3.9 × 10-7M Chem. Eur. J. 2011, 17, 9066-9069

turn-on No data for Au3+ Analyst 2012, 137, 4411-4414

turn-on 0.4 μM Org. Lett. 2012, 14, 5062-5065

on-off 1.50 × 10-5 M Tetrahedron 2013, 69, 2048-2051

ratiometric 8.44 μM Biosensors Bioelectronics 2013, 49, 438-441.

turn-on 0.6 ppm Analyst 2013, 138, 3638-3641

ratiometric 8 nM Chem. Eur. J. 2015, 21, 13201-13205

turn-on 44 nM Chem. Commun. 2014, 50, 5884-5886

turn-on 65 nM Chem. Commun. 2014, 50, 1119-1121

turn-on 0.5 ppb Org. Lett. 2014, 16, 1374-1377

turn-on 95 ppb Dyes and Pigments 2015, 112, 236-238

turn-on 0.5 nM J. Org. Chem., 2015, 80, 8530-8538

turn-on 23 nM Biosensors Bioelectronics 2016, 80, 288-293

ratiometric 18 nM Present work

The detection limit of compound 1 for Au3+ was 18 nM, much lower than that of existing probes except for probe 

(LOD 0.5 nM) reported by Adhikari et al. (Table S3), indicating compound 1 could be used as a high sensitivity probe 

for Au3+ ions detection.
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