Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information Highly selective ratiometric fluorescent probe based on

diketopyrrolopyrrole for Au³⁺: an experimental and theoretical study

Xiaofeng Yang,^{a,b,*} Yexin Li,^a Zongshi Zhao,^a Yiming Ding,^a Yan Zhang,^a Xiaolei Liu,^a Yu Cui^a,

Guoxin Sun^a, Guangyou Zhang^a and Mei Yan^a

Fig. S1. ¹H NMR and ¹³C NMR spectrum of compound **1** (DMSO- d_{δ}).

Fig. S2. Partial ¹H-¹H COSY NMR spectrum of compound **1** (in DMSO- d_{δ}).

Fig. S3. HRMS-ESI spectra of compound 1.

Fig. S4. The fluorescent intensity of probe 1 (10 μ M) in various solvents. (λ_{ex} : 485 nm).

Fig. S5: The influence of water content to the fluorescent intensity of probe 1 (10 μ M). (λ_{ex} : 485 nm).

Fig. S6. Absorption (left) and emission (right) spectra of compound 1 (1×10⁻⁵ M) in DMF/0.01 M PBS buffer (v/v, 4:1,

pH 7.4).

Fig. S7. Reaction time profile of probe 1 (10 μ M) in the presence of Au³⁺ (200 μ M). The fluorescence intensity ratio (I_{610}/I_{555}) of probe 1 was continuously monitored at time intervals in DMF/0.01 M PBS buffer (v/v, 4:1, pH 7.4). (λ_{ex} : 485 nm).

Fig. S8. Effect of pH on the fluorescence intensity of **1** (10 μ M) in DMF/0.01 M PBS buffer (v/v, 4:1, pH 7.4) in the absence (black dot) and presence of Au³⁺ (red dot). (λ_{ex} : 485 nm).

Fig. S9. Emission spectra of **1** (10 μ M) in DMF/0.01 M PBS buffer (v/v, 4:1, pH 7.4) (black line); upon addition of 200 μ M of Au³⁺ under the inert gas (red line); upon addition of 200 μ M of Au³⁺ under the atmosphere of oxygen (blue line). λ_{ex} : 485 nm.

Fig. S10. HRMS-ESI spectra of DPP-AL.

Synthesis of DPP-AC: AuCl₃ (10 mmol %) was added to the solution of **1** (25 mg, 0.031 mmol) in 20 ml DMF-H₂O (v/v = 4:1), and the reaction mixture was stirred for 4h. The solvent was evaporated and the mixture was purified by column chromatography (CH₂Cl₂/CH₃OH = 20/1) to give the compound DPP-AC (16 mg, 65%). ¹H NMR (400 MHz, CDCl₃/CD₃OD) δ (ppm) 8.19 (d, *J* = 8.4 Hz, 4H), 8.05 (d, *J* = 8.4 Hz, 4H), 3.94 (t, *J* = 5.2 Hz, 4H), 3.72 (t, *J* = 5.2 Hz, 4H), 3.57-3.55 (m, 12H), 3.50-3.48 (m, 4H), 3.37 (s, 6H). ¹³C NMR (100 MHz, CDCl₃/CD₃OD) δ (ppm) 167.8, 162.7, 148.4, 132.6, 131.2, 130.1, 129.9, 110.8, 71.8, 70.5, 68.8, 59.0, 42.5. HRMS-ESI: *m/z* calcd (%) for C₃₄H₄₁N₂O₁₂: 669.2659 [M+H⁺], found: 669.2665.

The partial ¹H NMR of probe **1** and the isolated **DPP-AC** were shown in Fig. S11. The resonance signals corresponding to semithiocarbazone moiety protons (H_c , H_d , H_e , H_f , H_g and H_h at δ 8.23, 7.57, 7.40, 7.24, 12.04, and 10.27 ppm, respectively) of **1** disappeared, and the two doublet resonance signals which indentified as *meso*-aryl protons (H_a and H_b) of **1** downfield shifted from 8.02 to 8.05 and from 8.13 to 8.19, respectively. On the other hand, ¹³C resonance peaks of C_{α} which indentified as carboxylic acid carbon of **DPP-AC** appeared at 167.8 (Fig. S12). Mass spectral analysis of the resulting mixture had shown a corroborative evidence for the product **DPP-AC** formation at *m/z* obsd 669.2665 (M+H⁺) (calcd 669.2659 for (M+H⁺)) (Fig. S13).

Fig. S11. (a) Synthesis route of **DPP-AC**; (b) Partial ¹H-NMR of **1** in DMSO-*d*₆; (c) Partial ¹H-NMR of **DPP-AC** in CDCl₃/CD₃OD.

Fig. S12. ¹H NMR and ¹³C NMR spectrum of **DPP-AC** (CDCl₃/CD₃OD).

Fig. S13. HRMS-ESI spectra of DPP-AC.

Fig. S14. The optimized ground-state and excited-state geometries of probe 1 and selected C=N or N-N or C-N or C-S

or C=S bond lengths (in Å).

geometries of product **DPP-AC**.

Fig. S16. The frontier molecular orbitals (FMOs) involved in the vertical excitation and emission of **1** (enol isomer) and **1** (keto isomer). CT stands for conformation transformation. Excitation and radiative processes are marked as solid lines and the non-radiative processes are marked by dotted lines. For details please refer to **Fig. S11** and **Table** S1-S2.

Type of probe	LOD	Reference
turn-on	0.50 μΜ	Chem. Commun. 2009, 7218-7220
turn-on	50 nM	Org. Lett. 2009, 11, 5610-5613
ratiometric	No data for Au ³⁺	Org. Lett. 2010, 12, 5310-5313
turn-on	64 ppb	Org. Lett. 2010, 12, 932-934
turn-on	0.4 ppm (Au ⁺)	Org. Lett. 2010, 12, 401-403
turn-on	48 nM	Chem. Commun. 2011, 47, 12506-12508
turn-on	290 nM	Chem. Commun. 2011, 47, 4703-4705
ratiometric (FRET mechanism)	$3.9 \times 10^{-7} M$	Chem. Eur. J. 2011, 17, 9066-9069
turn-on	No data for Au ³⁺	Analyst 2012, 137, 4411-4414
turn-on	0.4 µM	Org. Lett. 2012, 14, 5062-5065
on-off	1.50 × 10 ⁻⁵ M	Tetrahedron 2013, 69, 2048-2051
ratiometric	8.44 µM	Biosensors Bioelectronics 2013, 49, 438-441.
turn-on	0.6 ppm	Analyst 2013, 138, 3638-3641
ratiometric	8 nM	Chem. Eur. J. 2015, 21, 13201-13205
turn-on	44 nM	Chem. Commun. 2014, 50, 5884-5886
turn-on	65 nM	Chem. Commun. 2014, 50, 1119-1121
turn-on	0.5 ppb	Org. Lett. 2014, 16, 1374-1377
turn-on	95 ppb	Dyes and Pigments 2015, 112, 236-238
turn-on	0.5 nM	J. Org. Chem., 2015, 80, 8530-8538
turn-on	23 nM	Biosensors Bioelectronics 2016, 80, 288-293
ratiometric	18 nM	Present work

Table S1. Comparison of the present probe with existing Au³⁺ probes

The detection limit of compound **1** for Au^{3+} was 18 nM, much lower than that of existing probes except for probe (LOD 0.5 nM) reported by Adhikari *et al.* (Table S3), indicating compound **1** could be used as a high sensitivity probe for Au^{3+} ions detection.