Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

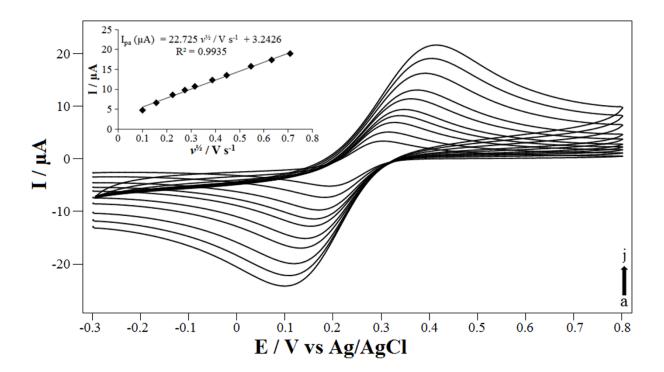
Electronic Supplementary Information

Reduced graphene oxide/platinum nanoparticles/nafion nanocomposite as a novel 2D electrochemical sensor for voltammetric determination of aliskiren

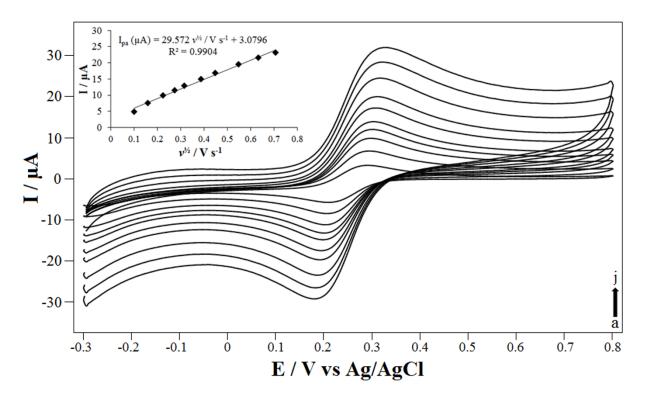
Ali Kemal Ateş^{ac}, Engin Er^{*a}, Hüseyin Çelikkan^b, Nevin Erk^a

^a Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey

^b Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey


^c Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey

^{*} Corresponding author; E-mail: eer@ankara.edu.tr, Tel: +90 312 203 3180


The electroactive surface area of developed sensor was calculated by CV in 1.0 mM $K_3Fe(CN)_6$ as a probe redox system according to the Randles-Sevcik equation¹;

$$I_p = 2.69 \times 10^5 \, AC n^{3/2} D^{1/2} v^{1/2} \tag{1S}$$

Where I_p is the peak current (A), A is the electroactive area (cm²), C is the molar concentration of the probe molecule, n is the number of transferred electron in the redox reaction, D is the diffusion coefficient of probe molecule (cm² s⁻¹) and v is the scan rate (V s⁻¹). The number of transferred electron (n) is 1 and diffusion constant (D) is 7.6×10⁻⁶ cm² s⁻¹ for [Fe(CN)₆]^{3-/4-} redox probe system. From the slope of the linear plot of I_p vs. v, the electroactive surface areas of GCE and rGO/PtNPs/NFN/GCE were calculated to be 31.00 mm² and 40.0 mm², respectively.

Fig. S1 CVs of 1.0 mM K₃Fe(CN)₆ in 0.1 M KNO₃ at various scan rates (a-j) (10, 25, 50, 75, 100, 150, 200, 300, 400 and 500 mV s⁻¹) on GCE (Inset: the slope of I_{pa} vs. $v^{1/2}$ for 1.0 mM K₃Fe(CN)₆ on GCE).

Fig. S2 CVs of 1.0 mM K₃Fe(CN)₆ in 0.1 M KNO₃ at various scan rates (a-j) (10, 25, 50, 75, 100, 150, 200, 300, 400 and 500 mV s⁻¹) on rGO/PtNPs/NFN/GCE (Inset: the slope of I_{pa} vs. $v^{1/2}$ for 1.0 mM K₃Fe(CN)₆ on rGO/PtNPs/NFN/GCE).

The heterogeneous electron transfer rate constant (k°) value for rGO/PtNPs/NFN/GCE was estimated by CV using the Nicholson method², which is applicable for reversible electrode reaction. According to the following equation developed by Nicholson,

$$\psi = k^o \left[\frac{\pi D n v F}{RT} \right]^{-1/2} \tag{2S}$$

Where ψ is a kinetic parameter, *D* is the diffusion coefficient of $[Fe(CN)_6]^{3-/4-}$ probe molecule (D=7.6×10⁻⁶ cm² s⁻¹ in supporting electrolyte solution), *n* is the number of transferred electron in the redox reaction, *v* is the scan rate (V s⁻¹), and other symbols (F,R and T) are their usual meaning. k^0 value was calculated as 6.84 × 10⁻³ using the slope of peak potential separation vs. scan rates ($\Delta E_p - v$) in 1.0 mM [Fe(CN)₆]^{3-/4-} redox solution.

References

- A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edition, John Wiley & Sons, New York, USA, 2001.
- 2. R.S. Nicholson, Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, *Anal. Chem.*, 1965, 37, 1351–1355.