Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Synthesis of ferrocenylmethylidene and arylidene substituted camphane based compounds as potential anticancer agents

Mariana Kamenova-Nacheva^a, Maria Schröder^b, Evdokia Pasheva^b, Ivaylo Slavchev^a, Vladimir Dimitrov^a, George Momekov^c, Rosica Nikolova^d, Boris Shivachev^d, Iva Ugrinova^b* and Georgi M. Dobrikov^a*

^aInstitute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, bl. 9, Acad. G. Bonchev str., Sofia 1113, Bulgaria *e-mail: gmdob@orgchm.bas.bg Tel.: +359 2 9606132; fax: +359 2 8700225

^bInstitute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, bl. 21, Acad. G. Bonchev str., Sofia 1113, Bulgaria

^cFaculty of Pharmacy, Medical University of Sofia, 2 Dunav str., Sofia 1000, Bulgaria

^dInstitute of Mineralogy and Crystallography "Acad. Ivan Kostov", Bulgarian Academy of Sciences, bl. 107, Acad. G. Bonchev str., Sofia 1113, Bulgaria

Table of Contents

S1.	General information and methodology	S- 2
S2.	Synthesis and analytical data of compounds	S-4
S3.	Additional X-ray crystallographic data	S-20
S4.	References	S-21
S5.	¹ H and ¹³ C NMR spectra of synthesized compounds	S-22

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

S1. General information and methodology

Chemistry:

For thin layer chromatography (TLC) aluminum sheets precoated with silica gel 60 F₂₅₄ (Merck) were used. Flash column chromatography was carried out using silica gel 60 (0.040-0.063 mm, 230-400 mesh ASTM, Merck). Commercially available solvents for TLC and column chromatography were used after distillation (and were dried when needed) - hexane, heptane, light petroleum ether fraction 40-60°C (PE), diethyl ether (Et₂O), dichloromethane (DCM), methyl tert-butyl ether (MTBE), tetrahydrofurane (THF), methanol (MeOH), ethanol (EtOH), ethylacetate (EtOAc). Toluene for *Claisen-Shmidt* type condensation was with 99.5 % purity (contains ca. 0.05% water) and was used without distillation. N,N-Diisopropylethylamine (DIEA) and trimethylamine were commercially available. Melting temperatures were determined in capillary tubes on an Electrothermal MEL-TEMP 1102D-230 VAC apparatus without corrections. The NMR spectra were recorded on a Bruker Avance DRX-250 (250.13 for ¹H and 62.90 MHz for ¹³C) and on a Bruker Avance II+ 600 (600.13 for ¹H and 150.92 MHz and for ¹³C NMR) spectrometers. In case of CDCl₃ TMS was used as internal standard for chemical shifts (δ , ppm) and ¹H spectra were calibrated to the signal of TMS ($\delta = 0.0000$). ¹³C spectra were calibrated in all cases to the residual solvent peaks (CDCl₃, δ = 77.00). The following additional NMR techniques were used: DEPT135, COSY, HSQC and HMBC. ¹H and ¹³C NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), integration, identification, and coupling constants (in Hz). For numbering of the atoms see section S2 in this supplementary material. Mass spectra (MS) were recorded on a Thermo Scientific High Resolution Magnetic Sector MS DFS by chemical ionization (CI) or electrospray ionization (ESI), and are reported as fragmentation in m/zwith relative intensities (%). Elemental analyses were performed by the Microanalytical Laboratory for Elemental Analysis of the Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences.

The names of the compounds are in agreement with the IUPAC nomenclature. The numbering of atoms in formulas is not in conformity with the IUPAC names of the compounds. Chemical shifts of carbon atoms in ¹³C NMR spectra assigned with asterisk (*) are tentative. The assignments of protons as H_a and H_b are tentative. Some other assignments: Cp – cyclopentadienyl ring, Fc – ferrocene.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 *Biology:*

Supplementary figure 1. Comparison of cytotoxicity of the ferrocenylmethylidene derivatives studied by MTT assay in four cancer and two normal cell lines after exposure to studied compounds for 72 h; the data are plotted as the IC_{50} values. The mean values of three independent experiments are presented the standard deviation is about 5% over most data, and is not shown to avoid clutter.

Supplementary figure 2. *Panel A*. An example plate layout for illustration how PE was calculated - the ratio of the number of colonies to the number of cells seeded according the formula:

PE = no. of colonies formed/ no. of cells seeded x 100%.

Panel B. A typical plate layout for SF calculation according the formula:

SF = no. of colonies formed after treatment/ no. of cells seeded x PE.

In every experiment, the PE was determined, as small changes in conditions may influence this factor. The surviving fraction of cells after each treatment was always calculated taking into account the PE of control cells in the same experiment.

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

S2. Synthesis and analytical data of compounds

1-((1*S*,4*R*)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-*N*,*N*-dimethylmethanesulfonamide (8):

For preparation and analytical data of this compound see references [1,2].

N-(*tert*-butyl)-1-((1*S*,4*R*)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methanesulfonamide (9):

To a solution of 1.94 ml (18.35 mmol) *tert*-butylamine (**2**) in 50 ml dry DCM was added at 0°C in small portions (1*S*)-(+)-10-camphorsulfonyl chloride (**1**) as a solid (2.00 g, 7.98 mmol). The reaction mixture was stirred at r.t. for 24 h, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated *in vacuo* and the crude product was crystallized from heptane:acetone = 10:1 ml. The crystals obtained were washed with hexane and dried *in vacuo* to give 1.57 g (69%) pure **9** as white crystals. ¹H NMR (600.13 MHz, CDCl₃, 293 K): δ = 3.49 (d, 1H, 10-H_a, *J* = 15.0 Hz), 2.99 (d, 1H, 10-H_b, *J* = 15.0 Hz), 2.40 (m, 1H, 3-H_{exo}), 2.32 (m, 1H, 6-H_{exo}), 2.12 (br t, 1H, 4-H, *J* = 4.5 Hz), 2.03 (tdd, 1H, 5-H_{exo}, *J* = 16.2, 12.1, 4.1 Hz), 1.94 (d, 1H, 3-H_{endo}, *J* = 18.7 Hz), 1.90 (m, 1H, 6-H_{endo}), 1.44 (m, 1H, 5-H_{endo}), 1.41 (s, 9H, 12-H), 1.05 (s, 3H, 9-H), 0.91 (s, 3H, 8-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): δ = 216.89 (1C, 2-C), 59.28 (1C, 1-C), 54.86 (1C, 11-C), 53.77 (1C, 10-C), 48.54 (1C, 7-C), 42.91 (1C, 3-C), 42.71 (1C, 4-C), 30.25 (3C, 12-C), 27.00 (1C, 5-C), 26.31 (1C, 6-C), 19.87 (1C, 8-C), 19.64 (1C, 9-C).

For other properties of this compound see references [3-5].

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 (1*S*,4*R*)-7,7-dimethyl-1-(((4-phenylpiperazin-1-yl)sulfonyl)methyl)bicyclo[2.2.1]heptan-2-one (10):

A modified literature procedure was used for this reaction [6].

To a solution of 1-phenylpiperazine (4) (3.03 ml, 19.94 mmol) and DIEA (3.63 ml, 21.93 mmol) in 40 ml dry DCM was added at 0°C in small portions (1S)-(+)-10-camphorsulfonyl chloride (1) (5.0 g, 19.94 mmol). The reaction mixture was stirred at r.t. for 24 h and washed with 5% aqueous HCl, water, saturated aqueous NaHCO₃, and water again. The organic phase was dried over anhydrous Na₂SO₄ and solvent was evaporated *in vacuo*. The product was washed with hot heptane (40 ml) and hexane (5 ml) and dried *in vacuo* to give 7.17 g (95%) pure **10** as white crystals. M.p. 154-155 °C. ¹H NMR (600.13 MHz, CDCl₃, 293 K): δ = 7.29 (m, 2H, 15-H), 6.94 (m, 2H, 14-H), 6.91 (br dt, 1H, 16-H, J = 7.4, 1.0 Hz), 3.47 (m, 4H, 11-H), 3.38 (d, 1H, 10-H_a, J = 14.6 Hz), 3.27 (br t, 4H, 12-H, J = 5.0 Hz), 2.78 (d, 1H, 10-H_b, J = 14.6 Hz), 2.54 (m, 1H, 6-H_{exo}), 2.39 (m, 1H, 3-H_{exo}), 2.13 (br t, 1H, 4-H, J = 4.5 Hz), 2.06 (m, 1H, 5-H_{exo}), 1.95 (d, 1H, 3-H_{endo}, J = 18.5 Hz), 1.67 (ddd, 1H, 6-H_{endo}, J = 14.1, 9.4, 4.8 Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 13.0, 9.4, 4.0 Hz), 1.15 (s, 3H, 9-H), 0.89 (s, 3H, 8-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): $\delta = 215.17$ (1C, 2-C), 150.77 (1C, 13-C), 129.23 (2C, 15-C), 120.70 (1C, 16-C), 116.92 (2C, 14-C), 58.15 (1C, 1-C), 49.52 (2C, 12-C), 47.92 (1C, 7-C), 45.69 (2C, 11-C), 44.62 (1C, 10-C), 42.74 (1C, 4-C), 42.55 (1C, 3-C), 26.89 (1C, 5-C), 25.08 (1C, 6-C), 19.98 (1C, 9-C), 19.76 (1C, 8-C). MS (CI) m/z (rel. int.): 378 (26, M+2), 377 (100, M+1), 376 (38, M), 161 (32). Anal. calcd. for C₂₀H₂₈N₂O₃S (376.51): C, 63.80; H, 7.50; N, 7.44; S, 8.52. Found: C, 63.74; H, 7.54; N, 7.49; S, 8.50 %.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 (1*S*,4*R*)-1-(((3,4-dihydroisoquinolin-2(1*H*)-yl)sulfonyl)methyl)-7,7-dimethylbicyclo[2.2.1] heptan-2-one (11):

To a solution of 2.50 ml (19.94 mmol) 5 and 3.06 ml (21.93 mmol) Et₃N in 80 ml dry DCM was added at 0°C in small portions (1S)-(+)-10-camphorsulfonyl chloride (1) as a solid (5.00 g, 19.94) mmol). The reaction mixture was stirred at r.t. for 48 h, washed with aqueous citric acid and water and dried over anhydrous Na_2SO_4 . The solvent was evaporated *in vacuo* and the crude product was crystallized from heptane: EtOH = 40:30 ml. The crystals were washed with hot hexane and dried in vacuo to give 5.99 g (86%) pure **11** as white crystals. M.p. 150-151 °C. ¹H NMR (600.13 MHz, $CDCl_3$, 293 K): $\delta = 7.19$ (m, 2H, 16-H, 17-H), 7.15 (m, 1H, 15-H), 7.10 (m, 1H, 18-H), 4.55 (d, 1H, 18 11-H_a, J = 15.4 Hz), 4.51 (d, 1H, 11-H_b, J = 15.4 Hz), 3.63 (td, 1H, 12-H_a, J = 12.0, 5.9 Hz), 3.59 (td, 1H, 12-H_b, J = 12.0, 5.9 Hz), 3.41 (d, 1H, 10-H_a, J = 14.6 Hz), 2.98 (t, 2H, 13-H, J = 5.9 Hz), 2.81 (d, 1H, 10-H_b, J = 14.6 Hz), 2.56 (m, 1H, 6-H_{exo}), 2.38 (m, 1H, 3-H_{exo}), 2.11 (br t, 1H, 4-H, J =4.5 Hz), 2.06 (m, 1H, 5-H_{exo}), 1.94 (d, 1H, 3-H_{endo}, J = 18.5 Hz), 1.67 (ddd, 1H, 6-H_{endo}, J = 14.1, 9.4, 4.8 Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 13.0, 9.4, 4.0 Hz), 1.15 (s, 3H, 9-H), 0.88 (s, 3H, 8-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): $\delta = 215.31$ (1C, 2-C), 133.31 (1C, 14-C), 132.03 (1C, 19-C), 128.98 (1C, 15-C), 126.77^{*} (1C, 17-C), 126.39^{*} (1C, 18-C), 126.30^{*} (1C, 16-C), 58.24 (1C, 1-C), 47.95 (1C, 7-C), 47.04 (1C, 11-C), 45.52 (1C, 10-C), 43.32 (1C, 12-C), 42.73 (1C, 4-C), 42.57 (1C, 3-C), 29.10 (1C, 13-C), 26.90 (1C, 5-C), 25.10 (1C, 6-C), 19.97 (1C, 9-C), 19.76 (1C, 8-C). MS (CI) m/z (rel. int.): 349 (12, M+2), 348 (53, M+1), 216 (12), 215 (100, camphor-SO₂), 133 (11, tetrahydroisoquinoline), 132 (86, tetrahydroisoquinoline-1). Anal. calcd. for C₁₉H₂₅NO₃S (347.47): C, 65.68; H, 7.25; N, 4.03; S, 9.23. Found: C, 65.61; H, 7.29; N, 4.08; S, 9.25 %.

For preparation of this compound see also reference [7].

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 (1R,5R)-3-((((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl)sulfonyl)-1,2,3,4,5,6-

hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one (12):

To a solution of 0.835 g (4.39 mmol) cytisine (6) and 0.67 ml (4.79 mmol) Et_3N in 20 ml dry DCM was added at 0° C in small portions (1S)-(+)-10-camphorsulfonyl chloride (1) as a solid (1.00 g, 3.99 mmol). The reaction mixture was stirred at r.t. for 20 h (TLC monitoring - DCM:MTBE = 3:1), washed with aqueous citric acid and water and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the crude product was purified by column chromatography (40 g silica gel, phase - DCM:MTBE = 3:1) to give 1.11 g (68%) pure 12 as white crystals. M.p. 173-174 °C. ¹H NMR (600.13 MHz, CDCl₃, 293 K): δ = 7.29 (dd, 1H, 19-H, J = 9.1, 6.9 Hz), 6.45 (dd, 1H, 20-H, J = 9.1, 1.2 Hz), 6.06 (dd, 1H, 18-H, J = 6.9, 1.2 Hz), 4.17 (d, 1H, 16-H_a, J = 15.7 Hz), 3.93 (m, 1H, $16-H_{b}$), 3.91 (m, 1H, 11-H_a), 3.82 (m, 1H, 15-H_a), 3.20 (m, 1H, 11-H_b), 3.18 (d, 1H, 10-H_a, J = 14.7Hz), 3.14 (dd, 1H, 15-H_b, J = 11.7, 2.1 Hz), 3.12 (br s, 1H, 14-H), 2.59 (m, 1H, 12-H), 2.54 (d, 1H, 10-H_b, J = 14.7 Hz), 2.34 (m, 1H, 3-H_{exo}), 2.29 (m, 1H, 6-H_{exo}), 2.07 (br t, 1H, 4-H, J = 4.5 Hz), 2.03 (m, 1H, 13-H_a), 1.98 (m, 1H, 5-H_{exo}), 1.92 (m, 1H, 13-H_b), 1.88 (d, 1H, 3-H_{endo}, J = 18.5 Hz), 1.48 (ddd, 1H, 6-H_{endo}, J = 14.0, 9.4, 4.7 Hz), 1.36 (ddd, 1H, 5-H_{endo}, J = 13.0, 9.4, 3.9 Hz), 1.02 (s, 3H, 9-H), 0.82 (s, 3H, 8-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): $\delta = 215.00$ (1C, 2-C), 163.23 (1C, 21-C), 148.42 (1C, 17-C), 138.72 (1C, 19-C), 117.64 (1C, 20-C), 105.36 (1C, 18-C), 57.99 (1C, 1-C), 52.76 (1C, 15-C), 51.54 (1C, 11-C), 48.83 (1C, 16-C), 47.96 (1C, 7-C), 46.18 (1C, 10-C), 42.65 (1C, 4-C), 42.50 (1C, 3-C), 34.33 (1C, 14-C), 27.09 (1C, 12-C), 26.86 (1C, 5-C), 25.27 (1C, 13-C), 24.92 (1C, 6-C), 19.70* (1C, 8-C), 19.66* (1C, 9-C). MS (CI) m/z (rel. int.): 406 (26, M+2), 405 (100, M+1), 404 (20, M), 189 (11). Anal. calcd. for C₂₁H₂₈N₂O₄S (404.52): C, 62.35; H, 6.98; N, 6.93; S, 7.93. Found: C, 62.30; H, 6.92; N, 6.98; S, 7.88 %.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 N-adamantan-1-yl-1-((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)

methanesulfonamide (13):

To a solution of 0.995 g (6.58 mmol) 1-adamantylamine (7) and 1.00 ml (7.18 mmol) Et₃N in 20 ml dry DCM was added at 0°C in small portions (1S)-(+)-10-camphorsulfonyl chloride (1) as a solid (1.50 g, 5.98 mmol). The reaction mixture was stirred at r.t. for 24 h (TLC monitoring – DCM), washed with aqueous citric acid and water and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the crude product was purified by column chromatography (70 g silica gel, phase – a) DCM, b) DCM:MTBE = 10:1) to give 1.30 g (60%) pure **13** as white crystals. M.p. 196-197 °C. ¹H NMR (600.13 MHz, CDCl₃, 293 K): $\delta = 5.00$ (br s, 1H, SO₂NH), 3.50 (d, 1H, 10-H_a, J =15.0 Hz), 3.01 (d, 1H, 10-H_b, J = 15.0 Hz), 2.40 (m, 1H, 3-H_{exo}), 2.33 (m, 1H, 6-H_{exo}), 2.11 (m, 4H, 4-H, 13-H), 2.03 (m, 1H, 5-H_{exo}) 2.01 (br s, 6H, 12-H), 1.94 (d, 1H, 3-H_{endo}, J = 18.5 Hz), 1.89 (ddd, 1H, 6-H_{endo}, J = 14.3, 9.4, 4.9 Hz), 1.67 (br t, 6H, 14-H, J = 3.0 Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 14.3, 9.4, 4.9 Hz), 1.67 (br t, 6H, 14-H, J = 3.0 Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 14.3, 9.4, 4.9 Hz), 1.67 (br t, 6H, 14-H, J = 3.0 Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 14.3, 9.4, 4.9 Hz), 1.67 (br t, 6H, 14-H, J = 3.0 Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 14.3, 9.4, 4.9 Hz), 1.67 (br t, 6H, 14-H, J = 3.0 Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 14.3, 9.4, 4.9 Hz), 1.67 (br t, 6H, 14-H, J = 3.0 Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 14.3, 9.4, 14-Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 14.3, 9.4, 14-Hz), 1.44 (ddd, 1H, 5-H_{endo}, J = 14.3, 14-Hz), 14-Hz 13.0, 9.4, 4.0 Hz), 1.05 (s, 3H, 9-H), 0.91 (s, 3H, 8-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): $\delta =$ 216.83 (1C, 2-C), 59.34 (1C, 1-C), 55.38 (1C, 11-C), 54.46 (1C, 10-C), 48.49 (1C, 7-C), 43.14 (3C, 12-C), 42.91 (1C, 3-C), 42.73 (1C, 4-C), 35.96 (3C, 14-C), 29.62 (3C, 13-C), 26.99 (1C, 5-C), 26.26 (1C, 6-C), 19.93 (8-C), 19.70 (1C, 9-C). MS (CI) m/z (rel. int.): 366 (7, M+1), 364 (10, M-1), 135 (100, adamantyl). Anal. calcd. for C₂₀H₃₁NO₃S (365.53): C, 65.72; H, 8.55; N, 3.83; S, 8.77. Found: C, 65.77; H, 8.50; N, 3.86; S, 8.71 %.

1-((1*S*,4*S*,)-3-((*E*)-3-ferrocenylmethylidene)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-*N*,*N*-dimethylmethanesulfonamide (15):

For preparation and analytical data of this compound see references [1,2].

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 1-((1S,4S)-3-((E)-ferrocenylmethylidene)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-N-(tert-butyl)methanesulfonamide (16):

To a solution of 0.500 g (1.74 mmol) 9 and 0.372 g (1.74 mmol) ferrocenecarbaldehyde (14) in 25 ml dry toluene were added powdered KOH (0.195 g, 3.48) and a crystal of 18-crown-6. The mixture was refluxed for 3 h (TLC monitoring – DCM) and cooled. 30 ml Et₂O was added, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and crude product was purified by column chromatography (80 g silica gel, phase – a) DCM, b) DCM:MTBE = 10:1) to give 0.779 g (93%) pure **16** as red crystals. M.p. 133-134 °C. ¹H NMR (600.13 MHz, $CDCl_3$, 293 K): $\delta = 7.13$ (s, 1H, 13-H), 5.65 (s, 1H, NH) 4.52 (m, 1H, 15-H), 4.51 (m, 1H, 18-H), 4.45 (m, 1H, 17-H), 4.43 (dt, 1H, 16-H, J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a, J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (d, 1H, 10-H_a), J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.58 (s, 5H, Cp), 3.5 15.0 Hz), 3.06 (d, 1H, 10-H_b, J = 15.0 Hz), 2.93 (br d, 1H, 4-H, J = 4.0 Hz), 2.32 (m, 1H, 6-H_{exo}), 2.17 (tt, 1H, 5-H_{exo}, J = 11.4, 4.5 Hz), 2.03 (ddd, 1H, 6-H_{endo}, J = 14.1, 9.3, 4.8 Hz), 1.56 (m, 1H, 5-H_{endo}), 1.45 (s, 9H, 12-H), 1.05 (s, 3H, 9-H), 0.89 (s, 3H, 8-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): δ = 204.91 (1C, 2-C), 136.48 (1C, 3-C), 130.75 (1C, 13-C), 78.06 (1C, 14-C), 71.83 (1C, 15-C), 71.05* (1C, 16-C or 17-C), 71.03* (1C, 16-C or 17-C), 69.47 (5C, Cp), 68.91 (1C, 18-C), 58.68 (1C, 1-C), 54.89 (1C, 11-C), 54.12 (1C, 10-C), 48.92 (1C, 4-C), 48.28 (1C, 7-C), 30.30 (3C, 12-C), 27.81 (1C, 6-C), 25.62 (1C, 5-C), 20.74 (1C, 9-C), 18.89 (1C, 8-C). MS (CI) m/z (rel. int.): 484 (96, M+1), 483 (55, M), 428 (60), 411 (100), 347 (25). Anal. calcd. for C₂₅H₃₃FeNO₃S (483.44): C, 62.11; H, 6.88; Fe, 11.55; N, 2.90; S, 6.63. Found: C, 62.19; H, 6.92; Fe, 11.50; N, 2.88; S, 6.67 %.

This journal is \bigcirc The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 (1*S*,4*S*)-3-((*E*)-ferrocenylmethylidene)-7,7-dimethyl-1-(((4-phenylpiperazin-1-

yl)sulfonyl)methyl)bicyclo[2.2.1]heptan-2-one (17):

A mixture of 10 (1.00 g, 2.66 mmol), powdered KOH (0.224 g, 3.99 mmol) and 18-crown-6 (0.071 g, 0.27 mmol) in 20 ml dry toluene was stirred for 30 min and ferrocenecarbaldehyde (14) (0.569 g, 2.66 mmol) was added. The mixture was heated for 5 h at 80°C and 1 h at 120°C. The reaction was cooled, guenched with water and extracted with CH₂Cl₂ (3x30 ml). The combined organic layers were washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the crude product was purified by column chromatography (160 g silica gel, phase - hexane/MTBE = 5:1) to give (1.404 g) (92%) of pure **17** as red crystals. $[\alpha]_{D}^{20} = -31.3$ (c 0.11, CHCl₃), M.p. 211-212 °C. ¹H NMR (600.1 MHz, CDCl₃, 293 K); $\delta = 7.30$ (t. 2H, 15-H, J =7.6 Hz), 7.12 (s, 1H, 17-H), 6.96-6.91 (m, 3H, 14-H, 16-H), 4.52* (s, br, 1H, 22-H), 4.51* (s, br, 1H, 19-H), 4.44* (s, br, 1H, 20-H), 4.42* (s, br 1H, 21-H), 4.15 (s, 5H, Cp), 3.55-3.52 (m, 5H, 11-H, 10- H_a), 3.30-3.29 (m, 4H, 12-H), 2.93 (d, 1H, 4-H, J = 3.7 Hz), 2.88 (d, 1H, 10- H_b , J = 14.6 Hz), 2.64-2.59 (m, 1H, 6-Hexo), 2.24-2.18 (m, 1H, 5-Hexo), 1.75-1.70 (m, 1H, 6-Hendo), 1.59-1.53 (m, 1H, 5- H_{endo}), 1.18 (s, 3H, 9-H), 0.87 (s, 3H, 8-H). ¹³C NMR (150.9 MHz, CDCl₃, 293 K): $\delta = 203.56$ (1C, 2-C), 150.83 (1C, 3⁻C), 136.30 (1C, 3-C), 130.15 (1C, 11-C), 129.24 (2C, 5⁻C), 120.68 (1C, 6⁻C), 116.93 (2C, 4°-C), 78.22 (1C, 12-C), 71.62 (1C, 13-C), 70.91 (2C, 14-C, 15-C), 69.44 (5C, Cp), 69.02 (1C, 16-C), 57.48 (1C, 1-C), 49.56 (2C, 1`-C), 49.07 (1C, 4-C), 47.66 (1C, 7-C), 45.73 (2C, 2°-C), 44.87 (1C, 10-C), 26.07 (1C, 6-C), 25.57 (1C, 5-C), 20.62 (1C, 8-C), 19.39 (1C, 9-C). MS (CI) m/z (rel. int.): 572 (42, M), 411 (100, M-phenylpiperazine). Anal. calcd. for C₃₁H₃₆FeN₂O₃S (572.54): C, 65.03; H, 6.34; Fe, 9.75; N, 4.89; S, 5.60. Found: C, 65.03; H, 6.34; Fe, 9.75; N, 4.89; S, 5.60 %.

This journal is \bigcirc The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 (15,45)-3-((E)-ferrocenylmethylidene)-1-(((3,4-dihydroisoquinolin-2(1H)-yl)sulfonyl)methyl)-

7,7-dimethylbicyclo[2.2.1]heptan-2-one (18):

To a solution of 0.800 g (2.30 mmol) 11 and 0.493 g (2.30 mmol) ferrocenecarbaldehyde (14) in 30 ml dry toluene were added powdered KOH (0.195 g, 3.48) and a crystal of 18-crown-6. The mixture was refluxed for 3 h (TLC monitoring – PE:MTBE = 5:1) and cooled. 30 ml Et_2O was added, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and crude product was purified by column chromatography (80 silica gel, phase -a) PE:MTBE = 10:1; b) PE:MTBE = 5:1) to give 0.886 g (71%) pure **18** as red crystals. M.p. 81-82 °C. ¹H NMR $(600.13 \text{ MHz}, \text{CDCl}_3, 293 \text{ K})$: $\delta = 7.20 \text{ (m, 2H, 17-H, 18-H)}, 7.15 \text{ (m, 1H, 15-H)}, 7.12 \text{ (m, 1H, 16-H)}, 7.12 \text{ (m, 1H, 16-H)},$ H), 7.10 (s, 1H, 20-H), 4.60 (d, 1H, 11-H_a, J = 15.4 Hz), 4.56 (d, 1H, 11-H_b, J = 15.4 Hz), 4.51 (td, 1H, 22-H, J = 2.5, 1.2 Hz), 4.50 (td, 1H, 25-H, J = 2.5, 1.2 Hz), 4.44^{*} (dt, 1H, 23-H or 24-H, J =2.5, 1.2 Hz), 4.42^* (dt, 1H, 23-H or 24-H, J = 2.5, 1.2 Hz), 4.14 (s, 5H, Cp), 3.68 (td, 1H, 12-H_a, J =11.9, 5.9 Hz), 3.62 (td, 1H, 12-H_b, J = 11.9, 5.9 Hz), 3.55 (d, 1H, 10-H_a, J = 14.7 Hz), 3.00 (br t, 2H, 13-H, J = 5.9 Hz), 2.92 (m, 1H, 4-H), 2.91 (d, 1H, 10-H_b, J = 14.7 Hz), 2.63 (ddd, 1H, 6-H_{exo}, J = 14.0, 11.5, 3.7 Hz), 2.21 (tt, 1H, 5-H_{exo}, J = 11.5, 4.7 Hz), 1.73 (ddd, 1H, 6-H_{endo}, J = 14.0, 9.3, 4.7 Hz), 1.56 (m, 1H, 5-H_{endo}), 1.18 (s, 3H, 9-H), 0.86 (s, 3H, 8-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): δ = 203.71 (1C, 2-C), 136.38 (1C, 3-C), 133.38 (1C, 14-C), 132.12 (1C, 19-C), 130.06 (1C, 20-C), 128.99 (1C, 15-C), 126.75 (1C, 12-C), 126.38^{*} (1C, 17-C or 18-C), 126.33^{*} (1C, 17-C or 18-C), 78.23 (1C, 21-C), 71.59 (1C, 22-C), 70.89 (2C, 23-C, 24-C), 69.43 (5C, Cp), 69.04 (1C, 25-C), 57.58 (1C, 1-C), 49.07 (1C, 4-C), 47.68 (1C, 7-C), 47.08 (1C, 11-C), 45.74 (1C, 10-C), 43.37 (1C, 12-C), 29.17 (1C, 13-C), 26.09 (1C, 6-C), 25.58 (1C, 5-C), 20.63 (1C, 8-C), 19.39 (1C, 9-C). MS (CI) m/z (rel. int.): 545 (20, M+2), 544 (57 (M+1), 543 (100, M), 412 (25), 411 (91, Mtetrahydroisoquinoline), 347 (35, M-FcCHO). Anal. calcd. for C₃₀H₃₃FeNO₃S (543.50): C, 66.30; H, 6.12; Fe, 10.28; N, 2.58; S, 5.90. Found: C, 66.22; H, 6.17; Fe, 10.34; N, 2.59; S, 5.94 %.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 (1R,5R)-3-((((1S,4S)-3-((E)-ferrocenylmethylidene)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl)sulfonyl)-1,2,3,4,5,6-hexahydro-8*H*-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one (19):

To a solution of 0.500 g (1.24 mmol) 12 and 0.265 g (1.24 mmol) ferrocenecarbaldehyde (14) in 30 ml dry toluene were added powdered KOH (0.195 g, 3.48) and a crystal of 18-crown-6. The mixture was refluxed for 1.5 h (TLC monitoring – DCM:MeOH = 50:1) and cooled. The solvent was evaporated in vacuo without workup and crude product was purified by column chromatography (70 silica gel, phase –a) DCM:MTBE = 10:1; b) DCM:MeOH = 50:1) to give 0.684 g (92%) pure **19** as deep red crystals. M.p. 265-270 °C (with decomp.). ¹H NMR (600.13 MHz, CDCl₃, 293 K): $\delta = 7.29$ (dd, 1H, 19-H, J = 9.1, 6.8 Hz), 7.08 (s, 1H, 22-H), 6.46 (dd, 1H, 20-H, J = 9.1, 1.2 Hz), 6.06 (dd, 1H, 18-H, J = 6.8, 1.2 Hz), 4.51 (m, 1H, 24-H), 4.48 (m, 1H, 27-H), 4.43 (m, 1H, 26-H), 4.41 (dt, 1H, 25-H, J = 2.5, 1.2 Hz), 4.18 (br d, 1H, 16-H_a, J = 15.6 Hz), 4.14 (s, 5H, Cp), 3.96 (m, 1H, 16- H_{b}), 3.93 (m, 1H, 15- H_{a}), 3.85 (m, 1H, 11- H_{a}), 3.31 (d, 1H, 10- H_{a} , J = 14.7 Hz), 3.26 (m, 1H, 15- H_b), 3.19 (dd, 1H, 11- H_b , J = 11.7, 2.1 Hz), 3.13 (br s, 1H, 14-H), 2.88 (br d, 1H, 4-H, J = 4.2 Hz), 2.67 (d, 1H, 10-H_b, J = 14.7 Hz), 2.60 (br s, 1H, 12-H), 2.37 (m, 1H, 6-H_{exo}), 2.13 (tt, 1H, 5-H_{exo}, J= 11.9, 4.2 Hz, 2.04 (m, 1H, 13-H_a), 1.95 (m, 1H, 13-H_b), 1.54 (dt, 1H, 6-H_{endo}, J = 9.2, 5.0 Hz), 1.48 (m, 1H, 5-H_{endo}), 1.06 (s, 3H, 9-H), 0.80 (s, 3H, 8-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): $\delta = 203.46$ (1C, 2-C), 163.26 (1C, 21-C), 148.45 (1C, 17-C), 138.67 (1C, 19-C), 136.32 (1C, 3-C), 130.05 (1C, 22-C), 117.67 (1C, 20-C), 105.31 (1C, 18-C), 78.16 (1C, 23-C), 71.57 (1C, 24-C), 70.91^{*} (1C, 25-C or 26-C), 70.89^{*} (1C, 25-C or 26-C), 69.41 (5C, Cp), 69.02 (1C, 27-C), 57.38 (1C, 1-C), 52.77 (1C, 15-C), 51.56 (1C, 11-C), 48.98 (1C, 4-C), 48.82 (1C, 16-C), 47.70 (1C, 7-C), 46.26 (1C, 10-C), 34.38 (1C, 14-C), 27.13 (1C, 12-C), 25.97 (1C, 6-C), 25.52 (1C, 5-C), 25.31 (1C, 13-C), 20.55 (1C, 8-C), 19.12 (1C, 9-C). MS (CI) m/z (rel. int.): 603 (15, M+3), 602 (36, M+2), 601 (100, M+1), 600 (68, M), 536 (18), 535 (54), 411 (40). Anal. calcd. for C₃₂H₃₆FeN₂O₄S (600.55): C, 64.00; H, 6.04; Fe, 9.30; N, 4.66; S, 5.34. Found: C, 64.07; H, 6.08; Fe, 9.33; N, 4.60; S, 5.31 %.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 N-adamantan-1-yl-1-((1S,4S)-3-((E)-ferrocenylmethylidene)-7,7-dimethyl-2-oxobicyclo[2.2.1]

heptan-1-yl)methanesulfonamide (20):

To a solution of 0.700 g (1.92 mmol) 13 and 0.410 g (1.92 mmol) ferrocenecarbaldehyde (14) in 30 ml dry toluene were added powdered KOH (0.195 g, 3.48) and a crystal of 18-crown-6. The mixture was refluxed for 2 h (TLC monitoring – DCM) and cooled. 30 ml Et₂O was added, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and crude product was purified by column chromatography (70 silica gel, phase DCM) to give 0.830 g (77%) pure 20 as red crystals. M.p. >220 °C (with decomp.). ¹H NMR (600.13 MHz, CDCl₃, 293 K): $\delta =$ 7.13 (s, 1H, 15-H), 5.54 (br s, 1H, NH), 4.50-4.52 (m, 2H, 17-H, 20-H), 4.45* (m, 1H, 18-H or 19-H), 4.43^* (dt, 1H, 18-H or 19-H, J = 2.5, 1.3 Hz), 4.15 (s, 5H, Cp), 3.59 (d, 1H, 10-H_a, J = 15.0 Hz), 3.08 (d, 1H, 10-H_b, J = 15.0 Hz), 2.93 (br d, 1H, 4-H, J = 4.0 Hz), 2.32 (m, 1H, 6-H_{exo}), 2.17 (m, 1H, 5-H_{exo}), 2.12 (m, 3H, 13-H), 2.06 (m, 6H, 12-H), 2.03 (m, 1H, 6-H_{endo}), 1.68 (m, 6H, 14-H), 1.56 (m, 1H, 5-H_{endo}), 1.06 (s, 3H, 9-H), 0.89 (s, 3H, 8-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): $\delta = 204.84$ (1C, 2-C), 136.51 (1C, 3-C), 130.68 (1C, 15-C), 78.08 (1C, 16-C), 71.83^{*} (1C, 17-C or 20-C), 71.03* (1C, 18-C or 19-C), 71.00* (1C, 18-C or 19-C), 69.47 (5C, Cp), 68.89* (1C, 17-C or 20-C), 58.72 (1C, 1-C), 55.43 (1C, 11-C), 54.82 (1C, 10-C), 48.93 (1C, 4-C), 48.24 (1C, 7-C), 43.15 (3C, 12-C), 36.01 (3C, 14-C), 29.66 (3C, 13-C), 27.77 (1C, 6-C), 25.62 (1C, 5-C), 20.79 (1C, 8-C), 18.94 (1C, 9-C). MS (CI) *m/z* (rel. int.): 562 (44, M+1), 411 (100, M-adamantylamine). Anal. calcd. for C₃₁H₃₉FeNO₃S (561.56): C, 66.30; H, 7.00; Fe, 9.94; N, 2.49; S, 5.71. Found: C, 66.35; H, 7.10; Fe, 9.91; N, 2.42; S, 5.70 %.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 (1R,4S)-3-((E)-ferrocenylmethylidene)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (23):

For preparation and analytical data of this compound see reference [2].

(1*R*,1'*R*,3*E*,3'*E*,4*S*,4'*S*)-3,3'-(ferrocene-1,1`-diylbis(methaneylylidene))bis(1,7,7-trimethylbicyclo [2.2.1]heptan-2-one) (24):

To a solution of (+)-camphor (0.686 g, 4.51 mmol) and 1,1⁻ferrocenedicarboxaldehyde (22) (0.500 g, 2.25 mmol) in anhydrous toluene (30 ml), were added KOH (0.258 g, 4.51 mmol) and a crystal of 18-crown-6. The mixture was refluxed for 2 h (TLC monitoring - DCM) and cooled. 30 ml Et₂O was added, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and crude product was purified by column chromatography (70 silica gel, phase DCM:MTBE = 100:1) to give 0.468 g (40%) pure **24** as dark red crystals. M.p. 237-238 °C. ¹H NMR $(600.13 \text{ MHz}, \text{CDCl}_3, 293 \text{ K})$: $\delta = 6.96$ (s, 2H, 11-H), 4.46^* (m, 2H, 13-H or 16-H), 4.44^* (m, 2H, 13-H or 16-H), 4.36^* (m, 2H, 14-H or 15-H), 4.33^* (dt, 2H, 14-H or 15-H, J = 2.5, 1.3 Hz), 2.88 (br d, 2H, 4-H, J = 4.1 Hz), 2.10 (tt, 2H, 5-H_{exo}, J = 11.6, 4.1 Hz), 1.75 (ddd, 2H, 6-H_{exo}, J = 12.8, 11.6, 3.5 Hz), 1.51 (dt, 2H, 6-H_{endo}, J = 9.0, 4.9 Hz), 1.46 (m, 2H, 5-H_{endo}), 1.01 (s, 6H, 10-C), 0.99 (s, 6H, 8-H), 0.81 (s, 6H, 9-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): $\delta = 207.23$ (2C, 2-C), 139.66 (2C, 3-C), 126.44 (2C, 11-C), 80.07 (2C, 12-C), 72.21^{*} (2C, 13-C or 16-C), 71.96^{*} (2C, 14-C or 15-C), 71.76^{*} (2C, 14-C or 15-C), 69.81^{*} (2C, 13-C or 16-C), 57.12 (2C, 1-C), 49.30 (2C, 4-C), 46.41 (2C, 7-C), 30.64 (2C, 6-C), 25.70 (2C, 5-C), 20.66 (2C, 9-C), 18.37 (2C, 8-C), 9.30 (2C, 10-C). MS (CI) m/z (rel. int.): 511 (100, M+1). Anal. calcd. for C₃₂H₃₈FeO₂ (510.50): C, 75.29; H, 7.50; Fe, 10.94. Found: C, 75.20; H, 7.58; Fe, 10.99 %.

This journal is \bigcirc The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 1,1'-((1*S*,1'*S*,3*E*,3'*E*,4*S*,4'*S*)-(ferrocene-1,1`-diylbis(methaneylylidene))bis(7,7-dimethyl-2-

oxobicyclo[2.2.1]heptan-1-yl-3-ylidene))bis(N,N-dimethylmethanesulfonamide) (25):

A mixture of 8 (0.200 g, 0.77 mmol), KOH (0.07 g, 1.17 mmol) and 18-crown-6 (0.02 g, 0.08 mmol) in 5 ml dry toluene was stirred for 30 min and 22 (0.094 g, 0.39 mmol) was added. The mixture was heated for 1 h at 120°C, then was cooled, guenched with water and extracted with CH₂Cl₂ (3x10 ml). The combined organic layers were washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated *in vacuo* and the crude product was purified by column chromatography (50 g silica gel, phase: hexane/MTBE = 5:1) to give 0.117 g (60%) of pure 25 as red crystals. $[\alpha]_{p}^{20} = -1071.1$ (c 0.02, CHCl₃). M.p. 97-98 °C. ¹H NMR (600.1 MHz, CDCl₃, 293 K): $\delta =$ 6.99 (s, 2H, 11-H), 4.46-4.45 (m, 4H, 13-H, 16-H), 4.39-4.38* (m, 2H, 14-H), 4.37-4.36* (m, 2H, 15-H), 3.43 (d, 2H, 10-H_a, J = 14.6 Hz), 2.94 (s, 12H, SO₂NMe₂), 2.85 (d, 2H, 4-H, J = 3.4 Hz), 2.84 (d, 2H, 10-H_b, J = 14.6 Hz), 2.61 (ddd, 2H, 6-H_{exo}, J = 14.7, 11.5, 4.9 Hz), 2.22-2.16 (m, 2H, 5-Hexo), 1.72-1.68 (m, 2H, 6-Hendo), 1.53-1.49 (m, 2H, 5-Hendo), 1.17 (s, 6H, 9-H), 0.85 (s, 6H, 8-H). ¹³C NMR (150.9 MHz, CDCl₃, 293 K): δ = 203.58 (2C, 2-C), 137.74 (2C, 3-C), 128.32 (2C, 11-C), 79.56 (2C, 12-C), 72.68* (2C, 16-C), 72.39* (2C, 13-C), 72.24* (2C, 14-C), 69.73* (2C, 15-C), 57.44 (2C, 1-C), 49.11 (2C, 4-C), 47.64 (2C, 7-C), 43.69 (2C, 10-C), 37.52 (4C, SO₂NMe₂), 25.95 (2C, 6-C), 25.55 (2C, 5-C), 20.57 (2C, 9-C), 19.32 (2C, 8-C). MS (CI) m/z (rel. int.): 725 (60, M+1), 680 (100, M-Me₂N). Anal. calcd. for C₃₆H₄₈FeN₂O₆S₂ (724.75): C, 59.66; H, 6.68; Fe, 7.71; N, 3.87; S, 8.85. Found: C, 59.60; H, 6.73; Fe, 7.66; N, 3.89; S, 8.82 %.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 1-((1S,4S)-3-((E)-benzylidene)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-N-(tert-butyl) methanesulfonamide (29):

To a solution of 9 (0.200 g, 0.70 mmol) and benzaldehyde (26) (0.074 g, 0.70 mmol) in anhydrous toluene (15 ml), were added KOH (0.078 g, 1.39 mmol) and a crystal of 18-crown-6. The mixture was refluxed for 3 h (TLC monitoring – DCM) and cooled. 30 ml Et₂O was added, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and crude product was purified by column chromatography (50 silica gel, phase DCM) to give 0.173 g (77%) pure **29** as white crystals. M.p. 84-85 °C. ¹H NMR (600.13 MHz, CDCl₃, 293 K): $\delta = 7.48$ (m, 2H, 15-H), 7.42 (m, 2H, 16-H), 7.37 (m, 1H, 17-H), 7.30 (s, 1H, 13-H), 5.41 (s, 1H, NH), 3.61 (d, 1H, $10-H_a$, J = 15.0 Hz), 3.13 (d, 1H, 4-H, J = 4.2 Hz), 3.08 (d, 1H, $10-H_b$, J = 15.0 Hz), 2.40 (m, 1H, 6- H_{exo}), 2.26 (tt, 1H, 5- H_{exo} , J = 11.6, 4.7 Hz), 2.04 (ddd, 1H, 6- H_{endo} , J = 14.1, 9.3, 4.7 Hz), 1.69 (m, 1H, 5-H_{endo}), 1.45 (s, 9H, 12-H), 1.08 (s, 3H, 8-H), 0.87 (s, 3H, 9-H). ¹³C NMR (150.92 MHz, $CDCl_3$, 293 K): $\delta = 205.68$ (1C, 2-C), 140.33 (1C, 3-C), 134.96 (1C, 14-C), 129.89 (2C, 15-C), 129.70 (1C, 13-C), 129.28 (1C, 17-C), 128.79 (2C, 16-C), 58.55 (1C, 1-C), 54.94 (1C, 11-C), 53.88 (1C, 10-C), 48.80 (1C, 4-C), 48.48 (1C, 7-C), 30.29 (3C, 12-C), 27.39 (1C, 6-C), 25.86 (1C, 5-C), 20.63 (1C, 9-C), 18.83 (1C, 8-C). MS (ESI+) m/z (rel. int.): 398 (100, M+Na), 342 (40, M+Na-t-Bu). Anal. calcd. for C₂₁H₂₉NO₃S (375.53): C, 67.17; H, 7.78; N, 3.73; S, 8.54. Found: C, 67.12; H, 7.72; N, 3.79; S, 8.59 %.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 N-(*tert*-butyl)-1-((1S,4S)-7,7-dimethyl-2-oxo-3-((E)-3,4,5-trimethoxybenzylidene)bicyclo

[2.2.1]heptan-1-yl)methanesulfonamide (30):

To a solution of 9 (0.200 g, 0.70 mmol) and 3,4,5-trimethoxybenzaldehyde (27) (0.137 g, 0.70 mmol) in anhydrous toluene (15 ml), were added KOH (78 mg, 1.39 mmol) and a crystal of 18crown-6. The mixture was refluxed for 3 h (TLC monitoring – DCM) and cooled. 30 ml Et₂O was added, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated *in vacuo* and crude product was purified by column chromatography (50 silica gel, phase DCM:MTBE = 50:1) to give 0.200 g (62%) pure **30** as white crystals. M.p. 64-65 °C. ¹H NMR (600.13 MHz, $CDCl_3$, 293 K): $\delta = 7.22$ (s, 1H, 13-H), 6.71 (s, 2H, 15-H), 5.42 (br s, 1H, NH), 3.89 (br s, 9H, 18-H, 19-H), 3.61 (d, 1H, 10-H_a, J = 15.0 Hz), 3.10 (overlapped m, 1H, 4-H), 3.08 (d, 1H, 10-H_b, J = 15.0Hz), 2.41 (m, 1H, 6-H_{exo}), 2.27 (m, 1H, 5-H_{exo}), 2.04 (ddd, 1H, 6-H_{endo}, J = 14.0, 9.3, 4.8 Hz), 1.70 (m, 1H, 5-H_{endo}), 1.45 (s, 9H, 12-H), 1.09 (s, 3H, 8-H), 0.89 (s, 3H, 9-H). ¹³C NMR (150.92 MHz, $CDCl_3$, 293 K): $\delta = 205.42$ (1C, 2-C), 153.29 (2C, 16-C), 139.48 (1C, 3-C), 139.30 (1C, 17-C), 130.41 (1C, 14-C), 129.94 (1C, 13-C), 107.18 (2C, 15-C), 60.96 (1C, 19-C), 58.44 (1C, 1-C), 56.13 (2C, 18-C), 54.93 (1C, 11-C), 53.85 (1C, 10-C), 48.99 (1C, 4-C), 48.57 (1C, 7-C), 30.28 (3C, 12-C), 27.42 (1C, 6-C), 25.70 (1C, 5-C), 20.62 (1C, 9-C), 18.89 (1C, 8-C). MS (ESI+) m/z (rel. int.): 488 (100, M+Na), 432 (14, M+Na-t-Bu). Anal. calcd. for C₂₄H₃₅NO₆S (465.60): C, 61.91; H, 7.58; N, 3.01; S, 6.89. Found: C, 61.98; H, 7.54; N, 2.97; S, 6.83 %.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 N-(*tert*-butyl)-1-((1*S*,4*S*,*E*)-7,7-dimethyl-2-oxo-3-(thiophen-2-ylmethylene)bicyclo[2.2.1]heptan-1 yl)methanesulfonamide (31):

1-yl)methanesulfonamide (31):

To a solution of 9 (0.200 g, 0.70 mmol) and thiophene-2-carbaldehyde (28) (0.078 g, 0.70 mmol) in anhydrous toluene (15 ml), were added KOH (78 mg, 1.39 mmol) and a crystal of 18crown-6. The mixture was refluxed for 3 h (TLC monitoring – DCM) and cooled. 30 ml Et₂O was added, washed with water and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and crude product was purified by column chromatography (50 silica gel, phase DCM) to give 0.162 g (61%) pure **31** as white crystals. M.p. 76-77 °C. ¹H NMR (600.13 MHz, CDCl₃, 293 K): $\delta = 7.49$ (d, 1H, 17-H, J = 5.0 Hz), 7.44 (s, 1H, 13-H), 7.30 (d, 1H, 15-H, J = 3.4 Hz), 7.11 (dd, 1H, 16-H, J = 5.0, 3.4 Hz), 5.47 (s, 1H, N<u>H</u>), 3.60 (d, 1H, 10-H_a, J = 15.0 Hz), 3.20 (d, 1H, 4-H, J = 4.0 Hz), 3.07 (d, 1H, 10-H_b, J = 15.0 Hz), 2.36 (m, 1H, 6-H_{exo}), 2.22 (tt, 1H, 5-H_{exo}, J = 11.6, 4.7 Hz), 2.01 (ddd, 1H, 6-H_{endo}, J = 14.1, 9.3, 4.7 Hz), 1.56 (ddd, 1H, 5-H_{endo}, J = 12.7, 9.3, 3.7 Hz), 1.44 (s, 9H, 12-H), 1.09 (s, 3H, 8-H), 0.90 (s, 3H, 9-H). ¹³C NMR (150.92 MHz, CDCl₃, 293 K): $\delta = 205.40$ (1C, 2-C), 138.75 (1C, 3-C), 137.78 (1C, 14-C), 132.83 (1C, 15-C), 129.47 (1C, 17-C), 127.89 (1C, 16-C), 122.54 (1C, 13-C), 58.82 (1C, 1-C), 54.92 (1C, 11-C), 53.93 (1C, 10-C), 49.25 (1C, 4-C), 48.60 (1C, 7-C), 30.28 (3C, 12-C), 27.81 (1C, 6-C), 25.59 (1C, 5-C), 20.65 (1C, 9-C), 18.90 (1C, 8-C). MS (ESI+) m/z (rel. int.): 404 (100, M+Na), 348 (13, M+Na-t-Bu). Anal. calcd. for C₁₉H₂₇NO₃S₂ (381.55): C, 59.81; H, 7.13; N, 3.67; S, 16.81. Found: C, 59.89; H, 7.19; N, 3.62; S, 16.76 %.

This journal is O The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 1-((1S,2R,4S)-3-((E)-ferrocenylmethylidene)-2-hydroxy-7,7-dimethyl-2-(pyridin-2-bydroxy-7,7-dimethyl-2-bydroxy-7,7-dimethyl-2-(pyridin-2-bydroxy-7,7-dimethyl-2-(pyridin-2-bydroxy-7,7-dimethyl-2-(pyridin-2-bydroxy-7,7-dimethyl-2-bydroxy-7,7-dimethyl-2-bydroxy-7,7-dimethyl-2-(pyridin-2-bydroxy-7,7-dimethyl-2-bydroxy-7,7-dimet

yl)bicyclo[2.2.1]heptan-1-yl)-*N*,*N*-dimethylmethanesulfonamide (35):

For preparation and analytical data of this compound see references [1].

1-((1*S*,2*R*,4*S*)-3-((*E*)-ferrocenylmethylidene)-2-hydroxy-7,7-dimethyl-2-((6-methylpyridin-2-yl)methyl)bicyclo[2.2.1]heptan-1-yl)-*N*,*N*-dimethylmethanesulfonamide (36):

For preparation and analytical data of this compound see references [2].

1-((1*S*,2*R*,4*S*)-3-((*E*)-ferrocenylmethylidene)-2-hydroxy-7,7-dimethyl-2-(thiophen-2-yl)bicyclo[2.2.1]heptan-1-yl)-*N*,*N*-dimethylmethanesulfonamide (37):

For preparation and analytical data of this compound see references [1].

S3. Additional X-ray crystallographic data

Supplementary Table 1. Most important crystallographic and refinement details for compound 16.

Crystal data	
Chemical formula	$C_{25}H_{33}FeNO_3S$
$M_{ m r}$	483.43
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	290
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.6676 (2), 10.8399 (4), 57.6299 (16)
$V(\text{\AA}^3)$	4790.0 (3)
Ζ	8
Radiation type, λ (Å)	Μο <i>K</i> α, 0.71073
$\mu (mm^{-1})$	0.74
Crystal size (mm)	$0.35 \times 0.32 \times 0.18$
Data collection	
Diffractometer	SuperNova, Dual, Cu at zero, Atlas diffractometer
Absorption correction	Multi-scan, CrysAlis PRO [8]
T_{\min}, T_{\max}	0.739, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	26053, 10641, 8062
R _{int}	0.036
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1}), \theta_{max} / \theta_{min} (^{\circ})$	0.679, 28.9/2.8
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.060, 0.152, 1.06
No. of reflections	10641
No. of parameters	648
No. of restraints	0
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \ (e \ \text{\AA}^{-3})$	0.61, -0.32
Absolute structure	Flack x determined using 2484 quotients [(I+)-(I-)]/[(I+)+(I-)] [9]
Absolute structure parameter	-0.006 (8)

Supplementary Table 2. Hydrogen-bond and weak interactions (CH....O) geometry (Å, °).

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N12A—H12A…O12	0.85	2.26	3.076 (13)	159
N12 <i>B</i> —H12 <i>E</i> ····O11	0.86	2.58	3.054 (11)	116
C101—H10 <i>B</i> ····O11	0.97	2.35	2.855 (10)	112
C121—H12 <i>I</i> ···O31	0.96	2.42	3.048 (11)	123
C131—H13 <i>H</i> ····O21 ⁱ	0.96	2.56	3.165 (9)	121
$C12A$ — $H12D$ ···· $O32A^{i}$	0.96	2.08	2.94 (2)	148
C14 <i>B</i> —H14 <i>C</i> ···O22 <i>A</i>	0.96	2.44	3.09 (4)	125
C12B—H12F····O32B	0.96	2.36	3.02 (2)	126
C13B—H13E…O11	0.96	2.56	3.378 (15)	143
C13B—H13F····O22 B^{i}	0.96	2.31	2.974 (16)	125

Symmetry code: (i) x+1, y, z.

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

S4. References

[1] M. Kamenova-Nacheva, G. Dobrikov and V. Dimitrov, Arkivoc, 2009, 12, 141-152.

[2] M. Kamenova-Nacheva, G.M. Dobrikov and V. Dimitrov, *Tetrahedron: Asymmetry*, 2016, 27, 852-864.

- [3] Tsai-Lung Yeh, Chun-Chen Liao and Biing-Jiun Uang, Tetrahedron, 1997, 53, 11141-11152.
- [4] A. Shaabani, E. Soleimani and A.H. Rezayan, Tetrahedron Lett., 2007, 48, 2185-2188.

[5] Shaohua Gou, Zhongbin Ye, Zhiyu Huang and Xiping Ma, *Appl. Organometal. Chem.*, 2010, **24**, 374-379.

[6] P.D. Williams, P.S. Anderson, R.G. Ball, M.G. Bock, L. Carroll, S.H.L. Chiu, B.V.

Clineschmidt, J. Chris Culberson, J.M. Erb, B.E. Evans, S.L. Fitzpatrick, R.M. Freidinger, M.J.

Kaufman, G.F. Lundell, J.S. Murphy, J.M. Pawluczyk, D.S. Perlow, D.J. Pettibone, S.M.

Pitzenberger, K.L. Thompson and D.F. Veber, J. Med. Chem., 1994, 37, 565-571.

[7] K. Ito and H. Tanaka, Chem. Pharm. Bull., 1977, 25, 1732-1739.

[8] Agilent Technologies, CrysalisPro Version 1.171.37.35 (release 13-08-2014 CrysAlis171.NET).

[9] S. Parsons, H. D. Flack and T. Wagner, Acta Cryst., 2013, B69, 249-259.

S5. ¹H and ¹³C NMR spectra of synthesized compounds

	210	200	190	180	170	160	150	140	130	120	110	100	90		70	60	50	 40		naa
anal particular	t al a su de la de la La de la d	hilliada bayoyibda pu	4 16 14 00 18 0 16 1 18 4 19 18 4 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19	ali ba sasar pi an ang ang ang ang ang ang ang ang ang	adır başırda başı		hand a subset	der telle strander og er fort	lkan talan karakan hatik Pengengan pengengan penak	eberhapi ei Arthant fa	indistriction of the sector	₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	all an all the second second	rive Nigerson P	in for the state of t	144471449-1444-1444-1444-1444-1444-1444-	*****	han a shi karan in fark	n af a spin a	Angle and the state of the
	I																			
																				1
	I						Со	13C mpoun	d 8							I	I		1	I Y
0 1 5	· c T Z															- 57.	47.	42. 42. 42.	- 26	25.

13C Compound 10		 58.15 49.52 44.62 42.74	S CO CO SO CO NAME DG-199-02A S CO CO SO CO 1 S CO CO SO CO 1 D Date_ 20111205 Time 14.26 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgdc30 TD 32768 SOLVENT CDC13 NS 256 DS 0 SWH 36057.691 Hz FIDRES 1.100393 Hz AQ 0.4544329 sec DE 6.50 usec DE 293.0 K DI 1.5000000 sec DI 1.5000000 sec DI 0.03000000 sl TDO 1 MDW 10 SSE 0 SSE 0 LB 0.00 Hz GB 0 PC 1.00
210 200 190 180 170 16	0 150 140 130		30 ppm

13C Compound 12	——163.23		——138.72	——117.64				57.99 52.76 51.54 48.83 47.96 4.18	24.33	19.70	NAME EXPNO PROCNO Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 D11 TD0 ====== CH NUC1 P1 SI SF WDW SSB LB GB PC	DK-133-02A 12 12 20111114 11.48 spect 5 mm PABBO BB- zgdc30 32768 CDC13 360 0 36057.691 Hz 1.100393 Hz 0.4544329 sec 293.1 K 1.5000000 sec 0.03000000 sec 0.03000000 sec 1 IANNEL f1 ======= 13C 10.75 usec 65536 150.9028180 MHz MM 0 1.00 Hz 0 1.00
210 200 190 180 17	kdliddatalai 70 160	150 1	40 130	120 1	10 100	90 80	70 6		1994 - Lato 2004 - Lato 1994 - Lato 2004 - Lato 2004 - Lato 1994 - Lato 2004 - Lato 2004 - Lato 1994 - Lato 2004 - Lato 2004 - Lato 2004 - Lato 1994 - Lato 2004 -	ppm		

97.00 13C Compound 19	—— 163.26	148.45 138.67		—— 117.67	—— 105.31	78.16 71.57 70.91 70.91 69.41	57.38 52.77 51.56 48.98 48.82 47.70		NAME DK-154-02 EXPNO 12 PROCNO 1 Date_ 20111212 Time 12.45 INSTRUM spect PROBED 5 mm PABBO BB- PULPROG zgdc30 TD 32768 SOLVENT CDC13 NS 512 DS 0 SWH 36057.691 Hz AQ 0.4544329 sec RG 2050 DW 13.867 usec DE 6.50 usec DE 6.50 usec TE 293.0 K D1 1.50000000 sec D1 0.0300000 sec D1 0.75 usec SI 65536 SF 150.9028180 MHz WDW EM SSB 0 LB 1.00 Hz GE 0 PC 1.00
14 14 14 14 14 14 14 14 14 14 14 14 14 1	D 160 1	1111121 a Kurkhaidika 7	130	120 11	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	80 70	60 50 40) 30 ppm	

	140.33 134.96 129.89 129.70 128.79	58.55 54.94 53.88 48.80 48.48	0.29 27.39 25.86 25.86 18.83	NAME CA-80 EXPNO 12 PROCNO 1 Date_ 20130131 Time 13.07 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgdc30 TD 32768 SOLVENT CDC13 NS 128 DS 0
13C Compound 29				SWH 36057.691 Hz FIDRES 1.100393 Hz AQ 0.4544329 sec RG 2050 DW 13.867 usec DE 7.48 usec TE 293.0 K D1 1.50000000 sec D1 0.0300000 sec TD0 1 ====== CHANNEL f1 ======= SF01 150.9188042 MHz NUC1 13C P1 10.75 usec SI 65536 SF 160.9023165 Muz
				WDW EM SSB 0 LE 1.00 Hz GB 0 PC 1.00
na skolet u se na skolet komen kon elektronister og elektronister at de se skolet se se skolet at skolet se sko Na skolet se skolet konster kon elektronister og elektronister at skolet se skolet se skolet se skolet skolet s	M. It's sub-set if we address which is a state of the first binary bound and by statistic and state of source state of the state of t	s teld to a glubble, us of the sheet of the second		
200 190 180 170 160 150	140 130 120 110 100 90 80 70	0 60 50 40	30 ppm	

