Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary data

Aqua Coordination to Attenuate the Luminescence Properties of Europium(III)-

Phosphine Oxide Porous Coordination Polymers

Kosuke Katagiri,*, † Naoya Matsuo, † Masatoshi Kawahata, ‡ Hyuma Masu,§ and Kentaro Yamaguchi ‡

Table of Contents

General Procedure

¹ H, ¹³ C and ³¹ P NMR spectra of 1	S2–3
NMR Spectroscopy	
¹ H, ¹³ C and ³¹ P NMR spectra of 1	S2–3
ESI-MS Spectroscopy	
ESI-MS spectrum of 1	S4
Thermogravimetric Analysis	
TGA data of $[Eu(1) \cdot dmf]$ (1a)	S5
Luminescence Propertiy	
Solid-State Emission spectrum of [Eu(1)·dmf] (1a)	S6-7
Powder X-ray Diffraction Pattern	
PXRD pattern for $[Eu(1) \cdot dmf](1a)$	S8
X-ray Crystallographic Analysis	
Crystal data of $[Eu(1) \cdot dmf]$ (1a) and $[Eu(1) \cdot 0.55 dmf \cdot 0.45 H_2 O]$ (1b)	S9
X-ray Crystallographic Analysis of [Eu(1)·dmf] (1a)	S10–12
X-ray Crystallographic Analysis of [Eu(1)·0.55dmf·0.45H ₂ O] (1b)	S13–14
Adsorption-Desorption Isotherm	
Adsorption-desorption isotherm for $[Eu(1) \cdot dmf](1a)$	S15–17

Fig. S1. ¹H NMR of 1 in CDCl₃.

Fig. S2. ¹³C NMR of 1 in CDCl₃.

Fig. S3. ³¹P NMR of 1 in CDCl₃.

ESI-MS Spectroscopy

Fig. S4. ESI-MS spectrum of 1 in DMSO/MeOH.

Thermogravimetric Analysis

Fig. S5. TGA curve for as-synthesized $[Eu(1) \cdot dmf]_n$ (1a).

Fig. S6. TGA curve for desolvated $[Eu(1) \cdot dmf \cdot h_2o]_n$ (1a).

Fig. S7. Solid-state emission spectra of $[Eu(1) \cdot dmf]_n$ (1a).

Fig. S8. Solid-state emission spectra of $[Eu(1) \cdot dmf \cdot H_2O]_n$ (1b).

Fig. S9. Solid-state emission spectra of $[Eu(1) \cdot H_2O]_n$ (1c).

Powder X-ray Diffraction Pattern

Fig. S10. PXRD pattern for $[Eu(1) \cdot dmf]_n$ (1a).

X-ray Crystallographic Analysis

	$[Eu(1) \cdot dmf]_n (1a)$	$[Eu(1) \cdot dmf \cdot H_2O]_n (1b)$
formula	C ₄₂ H ₃₁ NO ₈ PEu	C40 64H27 82No 55O8PEu
formula weight	860.61	834.76
Т(К)	273	273
crystal system	orthorhombic	orthorhombic
space group	Pcca	Pcca
a (Å)	36.202(7)	36.205(7)
b (Å)	15.391(3)	15.379(3)
c (Å)	29.655(6)	29.692(6)
α (°)	90	90
$\beta(^{\circ})$	90	90
γ(°)	90	90
$V(Å^3)$	16523(6)	16532(6)
Z	8	8
$D_{\text{calc}} (\text{gm}^{-3})$	0.692	0.671
μ (mm ⁻¹)	1.088	1.086
F(000)	3456	3340
θ range (deg)	1.793–35.397	1.794–32.028
no. of reflections collected	45205	35578
no. of unique reflections (R_{int})	23666 (0.0474)	18374 (0.0124)
goodness of fit on F^2	0.718	1.094
$R_1, wR_2 [I > 2\sigma(I)]$	0.0515, 0.1599	0.0428, 0.1318
R_1, wR_2 (all data)	0.0661, 0.1798	0.0515, 0.1378
CCDC number	CCDC-1486160	CCDC-1486159

Table S1. Crystal data of $[Eu(1) \cdot dmf]_n$ (1a) and $[Eu(1) \cdot dmf \cdot H_2O]_n$ (1b).

Fig. S11. (a) Asymmetric unit of $[Eu(1) \cdot dmf]_n$ (1a) in the thermal ellipsoid model. The ellipsoids of all non-hydrogen atoms have been drawn at the 50% probability level. (b) Dinuclear metal center coordinated with eight ligands and two DMF molecules.

Fig. S12. Ball and stick model of 3D framework of $[Eu(1) \cdot dmf]_n$ (1a). Insets: View of the open pore along *a* axis (left), *b* axis (center) and *c* axis (right).

Fig. S13. View of the Eu(III) coordination sphere of $[Eu(1) \cdot dmf]_n$ (1a).

Fig. S14. Solvent-accessible voids of $[Eu(1) \cdot dmf]_n$ (1a) in the *ac* plane.

Fig. S15. (a) Asymmetric unit of $[Eu(1) \cdot 0.55 dmf \cdot 0.45 H_2 O]_n$ (**1b**) in the thermal ellipsoid model. The ellipsoids of all non-hydrogen atoms have been drawn at the 50% probability level. (b) Dinuclear metal center coordinated with eight ligands and two DMF/H₂O molecules.

Fig. S16. View of the Eu(III) coordination sphere of $[Eu(1) \cdot 0.55 dmf \cdot 0.45 H_2O]_n$ (1b).

Fig. S17. Solvent-accessible voids of $[Eu(1) \cdot 0.55 dmf \cdot 0.45 H_2O]_n$ (1b) in the *ac* plane.

 ${\sf Adsorption} \; / \; {\sf desorption} \; {\sf isotherm}$

Fig. S18. Adsorption-desorption isotherm for $[Eu(1) \cdot dmf](1a)$

Fig. S19. BET-Plot for [Eu(1)·dmf] (1a)

Fig. S20. t-Plot for [Eu(1) · dmf] (1a)

Fig. S21. BJH(ads)-Plot for $[Eu(1) \cdot dmf]$ (1a)

Fig. S22. BJH(des)-Plot for $[Eu(1) \cdot dmf](1a)$