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1. Steady State Optical Absorption and emission of dye 1, dye 2.

Solvatochromic behaviour of both dye 1 and dye 2 in different solvent like protic solvent and
aprotic solvent is studied. SI Figure 1A shows the solvent dependent normalized absorption
spectra of dye 1. Dye 1 shows little hypsochromic shift with increasing solvent polarity

which

=N
N

-

N

TR —— A B

2 0.9t Sos.

© —— CHCI3 —4 ——

——EtoH

'g 0.6 — weom g 0.6 T Toene

— —— CHCI3
~———EtOH
é 0.3 UEJ 0.3 —— MeOH
0.0

‘450 500 550 600 650 0550 600 650 700 750
Wavelength(nm) Wavelength (nm)
1.2

1.2
—ACN ) ——ACN

0 H

O g 9| —one C e ] D

& | —cnos

£0.6{ " eon

2

203

Loo : : : 0.0 —

450 500 550 600 650 550 600 650

Wavelength(nm) Wavelength(nm)

SI Figure 1: Normalized steady state optical absorption (A, C) and emission spectra (B, D)
of dyel and dye 2 in different solvent respectively.

can be assigned as m-n* transition in the BODIPY system. SI Figure 1B shows normalized
emission spectra of the dye 1 which shows bathochromic shift with increasing solvent
polarity. Steady state optical absorption and emission spectra of dye 2 are shown in SI Figure
1 C and D, respectively. Similar to dye 1, dye 2 also showing Hypsochromic shift in

absorption spectra and bathochromic shift in emission spectra.

2. Steady State Optical Absorption of Catechol, Resorcinol.

The individual solvatochromisms of catechol, resorcinol, solvatochromic behaviour of
catechol and Resorcinol in different solvent are plotted in SI Figure 2 A and B, respectively.
Steady state optical absorption spectrum of catechol (SI Figure 2 A) varies from 276-278 nm
in all solvent. Steady state optical absorption spectra of Resorcinol (SI Figure 2 B) varies

from 272-275 nm in all solvent which can be attributed to m-n* electronic transition.
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SI Figure 2: Normalized steady state optical absorption spectra (A) Catechol and (B)
Resorcinol in the different Solvent.
3. Steady State Optical Absorption and emission of Bare BODIPY, Phenyl substituted
BODIPY and phenyl BODIPY vinyl

Solvatochromic behaviour (steady state optical absorption and luminescence) of bare
BODIPY (dye C), Phenyl substituted BODIPY (dye S) and Phenyl-BODIPY Vinyl (dye V)
in different solvent are plotted in SI Figure 3 A to F. Steady state optical absorption and
photoluminescence spectra (SI Figure 3 A and B, respectively) of bare BODIPY varies from
491-499 nm and 504-515 nm, respectively in all solvent. Steady state optical absorption and
photoluminescence spectra (SI Figure 3 C and D, respectively) of Phenyl substituted
BODIPY varies from 497-503 nm and 509-517 nm, respectively in all solvent. Steady state
optical absorption and photoluminescence spectra (SI Figure 3 E and F, respectively) of
Phenyl BODIPY vinyl varies from 554-562 nm and 564-572 nm, respectively in all solvent.

All the relevant parameters are summarized in SI Table 1.
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SI Figure 3: Normalized steady state optical absorption (A, C, E) and emission (B, D, F)
spectra of bare BODIPY, phenyl substituted BODIPY and phenyl BODIPY vinyl in different
solvent, respectively.

We have studied solvatochromic behaviour of the bare BODIPY, phenyl substituted
BODIPY and phenyl BODIPY vinyl in the different solvent such as the protic and aprotic
solvent that are shown in the SI Figure 3. Similar to dye 1 and dye 2 the spectral properties of
these synthesized dyes are followed. The florescence quantum yield (®;) of the dye 1, dye 2,
bare BODIPY, phenyl substituted BODIPY and phenyl BODIPY vinyl has been calculated
with respect to the reference Rhodamin B (®rne = 69% in methanol). Similarly the
fluorescence quantum yield of the bare BODIPY and phenyl substituted BODIPY has been
calculated with respect to Fluorescein molecule (® = 79% in 0.1M NaOH) which has been
summarized in SI Table 1. The following equation were used to determine the emission
quantum yield.'-

1.0D_n?
b, =d, ———
1,0D; n?

Where, "I" is the area under the emission plot, "OD" is the optical density at excited
wavelength and "n" is the refractive index of the solvent. The superscript "i" and "r"

represent measured sample and standard sample, respectively.

4. Emission Decay Trace of dye 1, dye 2, Bare BODIPY, Phenyl Substituted BODIPY
and Phenyl BODIPY Vinyl:

SI Figure 4 A and B show the time resolved emission decay traces of the dye 1 and 2
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SI Figure 4: Solvent dependent emission decay trace of dye 1 (A) Aex=443 nm and Aem=580
nm, and dye 2 (B) Aex=443 nm and Aen=570 nm. "L" stands for IRF170 ps.
molecule excited at 443 nm laser and emission measured at 580 nm and 570 nm respectively.

The emission decay traces dye 1 are fitted single exponentially in aprotic polar solvent while
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these are fitted with multiexponentially in polar protic solvent (SI Table 1). Interestingly the
excited state life time in the polar protic solvent reduce drastically which suggest increase of
non-radiative relaxation through vibrational relaxation process due to hydrogen bonding.
Similarly the SI Figure 5 A, B and C shows the time resolved emission decay traces of the
Bare BODIPY, Phenyl substituted BODIPY and phenyl BODIPY vinyl dye molecule excited
at 443 nm laser and emission measured at 500 nm, 500 nm and 570 nm respectively. The
emission decay traces of Bare BODIPY, Phenyl substituted BODIPY and phenyl BODIPY

vinyl, are fitted single exponentially in aprotic or protic polar and non-polar solvent (SI Table

).
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SI Figure 5: Solvent dependent emission decay trace of Bare BODIPY (C) Aex=443 nm and
Aem= 500 nm, phenyl substituted BODIPY Aex = 443 nm and Aem = 500 and phenyl BODIPY
vinyl Aex= 443 nm and Aem= 570 nm. "L" stands for IRF 170 ps.

SI Table 1: Absorption (Aabs), fluorescence (Aem) maxima, Stokes shifts (Avs),
quantum yield (¢) and radiative lifetimes (t) of Bare BODIPY (dye C), Phenyl
substituted BODIPY (dye S) and Phenyl-BODIPY Vinyl (dye V) in different dielectric

(¢) solvent.
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Solvent Aap(nM) Aem(nm) ¢ T(ns)
dyeC dyeS dye dye dyeS dyeV dyeC dyeS dyeV dyeC dyeS dyeV
\% C

ACN 491 497 554 | 505 509 564 0.91 0.52 0.69 5.73 343 4.48
+0.04 +0.026 +0.03 +0.28 +0.17 +0.22

CH 499 502 559 | 512 514 568 0.82 0.44 0.60 5.31 2.58 3.99
+0.032 +0.022 +0.03 +0.26 +0.13 +0.2

EtOAc 494 498 555 506 510 565 0.89 0.63 0.72 5.55 3.48 4.38
+0.04 +0.032 +0.036 +0.28 +0.17 +0.22

Toluen 500 503 563 515 517 572 0.88 0.69 0.63 5.1 342 3.99
e +0.044 +0.034 +0.031 +0.25 +0.16 +0.2

CHCl; 498 502 561 512 515 572 0.86 0.7 0.64 5.5 3.6 4.36
+0.043 +0.035 +0.03 +0.27 +0.18 +0.21

EtOH 495 499 556 | 506 510 566 0.9 0.61 0.70 5.69 3.6 4.44
+0.045 +0.03 +0.034 +0.27 +0.17 +0.22

MeOH 493 498 554 | 506 509 565 0.90 0.53 0.70 5.8 34 4.48
+0.041 +0.022 +0.032 +0.3 +0.17 +0.24

5. Steady State Optical Absorption Measurement of the Catechol, Resorcinol, Dye 1,

Dye 2 and Vinyl Catechol with NS TiO2:

Ground state interaction of catechol, resorcinol, dye 1 and dye 2 with TiO» nanomaterials in

the chloroform, hexane and toluene are shown in SI Figure 6. Both catechol and resorcinol

form charge transfer complex with TiO2 nanostructure in all solvents. The absorption band of

the catechol appears at 276-278 nm in all solvents.
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dye 2/TiO2 (b)) in chloroform, hexane and toluene, respectively. Steady state optical
absorption spectra of TiO: (c) in corresponding solvent. [TiO2] =2 g L.

Interestingly, in presence of TiO: the optical spectra shifted to red region (~450 nm) with
spectral broadening. Similarly, in case of resorcinol/TiO> the optical absorption spectra are
shifted to red region (~425 nm) in all solvent. This observation can be assigned as formation
of CT complex. However, the spectral broadening and more red shifted optical absorption
band is appeared in case of catechol/TiO2 due to formation of strong five membered chelate
complexes. Similar experiment has been carried out with dye 1 and dye 2 in presence of TiO»
which are plotted in SI Figure 6 G to L. In all cases (i.e. in all solvent) we observe more red
shifted CT band in case of dye 1/TiO; as it has catecholate anchoring moiety.

Also the Ground state interaction of vinyl catechol with TiO2 nanomaterials in the chloroform
is shown in SI Figure 7 Vinyl catechol form charge transfer complex with TiO nanostructure
in chloroform solvent. The absorption band of the Vinyl catechol appears at 300 nm.
Interestingly, see in presence of TiO: the optical spectra shifted to red region (~450 nm) with

spectral broadening.
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SI Figure 7: Steady state optical absorption spectra of (a) Vinyl catechol, (b) Vinyl catechol-

TiOy, (¢) TiO2in the Chloroform. [TiO2] =2 g L.

6. Charge Transfer Interaction between dye Molecules to TiOz:

SI Figures 8 A and B show the deconvoluted optical absorption spectra of dye 1/TiO> and dye
2/TiO2, respectively. The optical absorption spectra of dye 1/TiO2 (SI Figure 8 A) are
deconvoluted to three Gaussian peaks having peak maxima at 563 nm, 617 nm and 697 nm.
Among them first peak at 563 nm can be referred as local band (LB) of dye 1 and the other
two bands 617 nm and 697 nm can be attributed to charge transfer bands (CTB) of dye

S7



1/TiO2 which are formed through conduction band states and trap states of TiO> NP and dye
1 respectively. Similarly optical absorption spectra of dye 2/TiO> (SI Figure 8 B) also
deconvoluted to two Gaussian peaks having peak maxima at 530 nm and 669 nm. These two
bands can be attributed to red shifted LB of S2 and S1 states of dye 2 on nanoparticle surface.
No new CTB has been observed in dye 2/TiO; system suggesting much weaker interaction in

the system.
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SI Figure 8: Panel A: optical absorption spectra of a) dye 1 b) dyel/TiO: in
chloroform. Dashed lines are the deconvoluted optical absorption spectra of
dyel/TiO2. Panel B: optical absorption spectra of d) dye 1 e) dye2/TiO: in
chloroform. Dashed lines are the deconvoluted optical absorption spectra of

dye2/TiO».

7. Dye adsorption on the NS TiO2 surface

Solid state UV-vis spectra is recorded and is shown in SI Figure 9. First we loaded the NS
TiO2 on the quartz surface. Then respective dye (1 and 2) was loaded through drop casted
method (0.5 mM solution of respective in acetonitrile solution) followed by measured the
UV-vis spectra. The solid state UV data also clearly reveals the anchoring or grafting of the
dye 1 (0.15 x 10-® mole cm™) is stronger than dye 2 (0.08 x 10¥ mole cm™).?
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SI Figure 9: UV- Visible absorption spectrum in solid state of (A) dye 1 and (B) dye 2. In
both cases TiO> (black line) before absorbed, TiO2-dye (red line) and desorbed dye on the
TiOz (blue).

8. Excited State Dynamics of dye 1 and dye 2:

The photoexcited electron relaxes from higher excited state (Sn) to the Si state and finally
relaxes to So state depending on their excited state life time. In the present study we have seen
growth of the positive signal for both the dye molecules. The kinetic trace at 750 nm of dye 1
(SI Figure 10 A) has bi-exponential growth 118< 100 fs (79%), 122 = 2 £+ 0.1ps (21%), and
multi-exponential decay trace with time constants 11 = 30 = 1.5 ps (61%) 12 = 150 + 7ps
(19%) and 13> 1 + 0.2 ns (20%). The slower growth component can be attributed to the
vibrational relaxation of excited singlet state 4¢ The long component (> 1 ns) can be
attributed to the excited singlet state life which has already been determined to be ~ 4 ns

through time-resolved emission

024 300 600 900
Delay Time (ps)
SI Figure 10: Kinetic decay traces of (A) dye 1 at 750 nm and (B) dye 2 at 730 nm after 400

nm laser excitation in chloroform.
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studies. Similarly the decay kinetics of dye 2 at 730 nm (SI Figure 10 B) also has bi-
exponential growth 1:8< 100 fs (78%), 122 = 2 £ 0.1 ps (22%), and multi-exponential decay
trace with time constants 11 = 25 + 1.2 ps (53%) 12 = 250 + 12.5 ps (29%) and 13> 1 = 0.2 ns
(18%). The slower growth component can be attributed to the vibrational relaxation of

excited singlet state.

9. Transient Absorption Spectrum (Uncorrected) of Cation Radical of dye 1 and dye 2:
To perform the transient absorption spectrum of the cation radicals for dye 1 and dye
2 molecules, one-electron oxidation reaction have been carried out in aqueous solution (99:1
water: acetonitrile mixture) bubbled with N>O and in the presence of N3 ion. Concentrations
of both the dyes have been kept ca. 5x10° mol dm=. The presence of hydroxyl or azide

radical allows the dye to undergo one-electron oxidation i.e. loss of an electron. The water

molecule is dissociated in different forms such as (H", OH", eaq").

A

Ground state —20ps 8 ——20pm
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(Dye 1)
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SI Figure 11: Transient absorption spectra of the cation radical at 20 ps for (A) dye 1 and

(B) dye 2 obtained from the pulse radiolysis by one-electron oxidation.

Finally the azide radicals react with the dye molecules resulting formation of azide anions
and dye cations. SI Figure 11 A and B show the cationic spectra of the Dye 1 at 20 us and
dye 2 at 20 ps time delay after exciting with electron pulse beam, respectively. Broad
transient absorption spectra in 600-750 nm regions with absorption maxima at 670 nm can be
assigned at the formation of dye 1 cation radical. While the transient absorption spectra of
dye 2 shows transient band in 580-650 nm region with peak maxima 615 nm can be attributed
to cation radical of dye 2.

The reactions are of the pulse radiolysis study are given below:
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H0 WWWWWY\WWA— H', OH', eaq and other related products
€ag *N2O - N, +O"

O +HO — OH + OH"

N3 +OH'(orO" ) > N3"+OH (or O, )

N;' + BODIPY — N3~ +BODIPY' '

10. Transmission Electron Microscope Measurements of TiO2:
TEM samples were prepared by drop-casting method. 1.0 mM toluene solution of NRs
dropped on the carbon coated copper grids (200 mesh). TEM grids were allowed to dry under

vacuum condition for 24 hours. It's clear from SI Figure 12 that length of the nanostructure is

~14 £ 1 nm and width is ~3 + 0.03 nm.

Number of Particle

0
& 10 12 14 16 18 20

NP length (nm)

SI Figure 12: The Transmission Electron Microscopy (TEM) images of oleic acid cap

Nanostructure TiOz and inset shows the particle size distribution histogram.

11. X-ray diffraction of the Powder XRD measurement of TiO2:

Powder XRD measurements were carried out to understand the crystal structure of the TiO»
Nanostructure. SI Figure 13 shows the XRD pattern of the synthesised TiO2 nanostructure.
The major peaks at 25.6, 38.11, 47.9 and 54.3 degree represent 101, 004, 200 and 211 planes
of the TiO2 nanostructure, respectively.
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SI Figure 13: Powder X-ray diffraction (XRD) patterns of TiO2 nanorod.

12. Synthesis:

(E)-3-(3,5-Dihydoroxy-1-vinyl-Benzene)-1,5,7-trimethyl-8-phenyl-4,4-
difluoroboradiazaindacene (2): 1,3,5,7-trimethyl-8-phenyl-4,4-difluoroboradiazaindacene
(400 mg, 1.23 mmol) and 3,5-dihydroxy benzaldehyde (170.38 mg 1.23 mmol) was refluxed
in a mixture of toluene ( 20 ml), Glacial Acetic acid (0.6 ml) and piperidine (0.9 ml excess).
Any water formed during the reaction was removed by heating azeotropically in a dean-stark
apparatus for 6 h. Crude compound was then evaporated and purified by silica gel column
chromatography (DCM: EtOAc = 95:5) to get pink colour compound (80 mg, yield=14 %).'H
NMR (400 MHz, CD;0D); 7.52 (1 H, J=15.20 Hz (CH=CH)), 7.34-7.49 (3 H, m, Ar-H),
7.28-7.26 (2 H, m), 7.14 (1H, d, 16.4 Hz (C=CH)), 6.66 (1 H, s,), 6.53, (2 H,d,1.6 Hz), 6.24
(1 H,t,j=1.6 Hz), 6.03 (1 H, s), 2.49 (3 H, s), 1.39(3 H, s), 1.36 (3H, s). *C NMR (100 MHz
CDs;OD): 14.63, 14.707, 14.827, 104.71, 106.82, 118.76, 119.94, 122.45, 129.47, 130.29,
130.43, 133.03, 133.91, 136.31, 137.66, 139.94, 142.20, 144.04, 144.35, 154.08, 156.56,
160.00. HR-MS: e/z (M"1) = 445.

Synthesis of BODIPY Core (1,3,5,7,8-Pentamethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-
indacene): A solution of acetyl chloride (500 mg, (454 uL), 6.4 mmol), 2,4-dimethyl-1H-
pyrrole (1.22 mg (1.31 ml), 12.82 mmol) in dry CH2Cl; (20 mL) were mixed at room
temperature. the mixture was heated for 1 h under reflux condition. NEt3 (4.5 mL, 32 mmol)
was added into the reaction mixture at room temperature in stirring condition. A solution of
BF3- Et20 (5 mL, 38 mmol) was added drop wise and stirred for 1 h at room temperature.
The reaction mixture was washed with saturated aqueous Na>COs3 solution (3 X 50 mL),

dried over Na>SOs, and then concentrated on a rotary evaporator. After that this residue was
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purified by column chromatography on silica with pet-ether ethyl acetate = 96:4. (Yield: 729
mg, 43%) NMR (400 MHz, CDCls); 6.04, (2 H, s ); 2.56 (3 H, s); 2.51 (6H, s), 1.39 (6 H, s).
13C NMR (100 MHz CDCls) 153.56, 141.40, 140.98, 132.03, 121.21, 17.27, 16.33, 14.39
(HR-MS- M+ =262)

Synthesis of Phenyl BODIPY Vinyl ((E)-3-Styryl-1,5,7-trimethyl-8-phenyl-4,4-
difluoroboradiazaindacene): 1,3,5,7-trimethyl-8-phenyl-4,4-difluoroboradiazaindacene
(180 mg, 0.55mmol) and benzaldehyde (66 mg, 0.55 mmol) were refluxed in presence of the
Toluene (15 ml), Acetic Acid (380 pl) and piperidine (380 pl) for 3 h. The water formed in
this reaction mixture was removed by the azotropicaly using the dean stark apparatus, and
purified by silica gel column chromatography (petether- EtOAc 95:5). Yield (64 mg, 25%
yield) NMR (400 MHz, CDCly); 7.68 (1 H, J=16.4 Hz (CH=C)); 7.60 (2H, d, J=7.6 Hz, Ar-
H); 7.50 3H, m,); 7.32 (2H, 3, J=8 Hz,); 7.31 (3H, d, J= 7.6 Hz,); 7.23 , (1H, J=16 Hz J=16
Hz (CH=C)); 6.61 (1H, s, ) 6.01,(1H,s ); 2.60 (3H, s); 1.43(3H, s), 1.39 (3H, s). 13C NMR
(100 MHz CDCI3) 14.38, 14.55, 14.75, 117.49, 119.19, 121.45, 127.44, 127.94, 128.15,
128.73, 128.83, 128.96, 129.11, 131.94, 135.05, 135.9, 136.52, 140.57, 142.36, 143.09,
152.51, 155.70 (HR-MS- M+ = 412)

Synthesis of 3,4-bis((tert-butyldimethylsilyl)oxy)benzaldehyde:

3,4-dihydroxy benzaldehyde (2 g, 14.49 mmol), 4-Dimethylaminopyridine (3.5 gm,
28.91mmol), Imidazole (5.91 g, 86.94 mmol) and TBDMSCI (4.37gm, 28.91 mmol) were
added in DMF at the 0 °C temperature. This reaction mixture was allowed to reach at room
temperature and stirred it for the overnight. After completion of the reaction 50 mL water was
added then reaction mixture extracted by the diethyl ether and dried (NaSQO4). The crude
compound was purified by Silica column chromatography (Petether-EtOAc 95:5) to get
Compound. (3.2g yield 61%) NMR (400 MHz, CDCl3): 9.80 7.36 (1H, d, J=8Hz); 7.35 (1H,
s); 6.93 (1H, d, J=8Hz); 0.99 (18H, s); 0.24 (6H, s); 0.22 (6H,s) 13C NMR (100 MHz
CDCls): 190.81; 153.31; 147.64; 130.70; 125.26. 120.77; 120.52; 25.83; 25.79; 18.50; 18.39;
-4.05; -4.14.

Synthesis of (E)-4-(pent-1-en-1-yl) benzene-1,2-diol:

Under an inert atmosphere and 0 °C temperature Butyl Lithium (3 ml 6 mmol of 2 M
solution) was added in the dry THF in stirring condition. After that drop by drop solution of
the 3,4-bis (tert-butyldimethylsilyl) oxy) benzaldehyde (2 g 5.45 mmol) in THF was added
in the reaction mixture at 0 °C. After completion of 1 h, 20 ml saturated solution of NH4Cl
was added into the reaction mixture and the product was extracted by the DCM (30 ml X 3)-

resulting yellowish oily Crude product was obtained. This crude product was dissolved in
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pyridine (30 ml) for the further reaction. The solution of the POCI; (5.45 mmol) in dry
pyridine (20 ml) was added drop by drop in the reaction mixture under an inert atmosphere at
room temperature with stirring for 1 h. To remove pyridine and excess POCI; the reaction
mixture was evaporated in rotory evaporator and mixed with crushed ice, respectively. The
reaction mixture was extracted in chloroform solution and the crude oil product in dry THF
(20 mL) used directly for further reaction. A solution of TBAF (2.85 g ml 10.91 mmol in the
10 ml dry THF) was added into the reaction mixture drop wise at 0 °C in an inert atmosphere.
After 40 minutes the 20 ml of water was added in the reaction mixture and it was extracted by
the DCM (25ml X 3) and dried NaSOs. The crude product was purified by the silica column
chromatography (petether —EtOAc 85:15). The colourless solution was obtained (Yield 100
mg, % yield =10%) NMR (500 MHz, CDCl;) 6.88 (1 H, d, J=8Hz); 9.77 (1 H, s ) 6.6 (1 H,
d, J = 8 Hz); 6.23 (1 H, d, J =16 Hz); 6.02 (1 H, m (CH=CH-CH2-)); 5.64 (2 H for OH
broad); 2.14 (2H, m); 1.46 (2H, m); .0.93 (3H, t) 13C NMR (125 MHz CDCl3z 143.56;
142.58; 131.69; 129.23; 129.12; 119.11; 115.41; 112.61; 35.00; 22.60; 13.70) (HR-MS- M+1
=179)

13 A. 'THNMR of Bodipy dye 2 in CD30D:
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13 B. 'THNMR of Bare Bodipy in CDCls:
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13 C. "THNMR of ((E)-3-Styryl-1,5,7-trimethyl-8-phenyl-4,4-difluoroboradiaza-indacene)
in CDCls:
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13 D. 'THNMR of 3,4-bis((tert-butyldimethylsilyl)oxy)benzaldehyde in CDCl3:
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13 E. 'THNMR (E)-4-(pent-1-en-1-yl)benzene-1,2-diol in CDCl3:
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14 A. BCNMR of Bodipy dye 2 in CD;0D
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14 B. 3CNMR of Bare BODIPY in CDCls:
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14 C. BCNMR of ((E)-3-Styryl-1,5,7-trimethyl-8-phenyl-4,4-difluoroboradiaza-
indacene) in CDCls:
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14 D. BCNMR ,4-bis((tert-butyldimethylsilyl)oxy)benzaldehyde in CDCls:
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14 E. BCNMR (E)-4-(pent-1-en-1-yl) benzene-1,2-diol in CDCl3:
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15 A. HRMS Mass Spectrum of dye 2:
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15 B. HRMS Mass Spectrum of Bare BODIPY:

Relative Abundance
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15 C. HRMS Mass spectrum of((E)-3-Styryl-1,5,7-trimethyl-8-phenyl-4,4-

difluoroboradiaza-indacene) in CDCls:
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15 D. HRMS Mass Spectrum of (E)-4-(pent-1-en-1-yl)benzene-1,2-diol:
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16 b. IR Spectrum dye 2:
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