Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Heterogenized chiral iminoindanol complex of manganese as an efficient catalyst for aerobic epoxidation of olefins

Vahideh Abbasi, Hassan Hosseini-Monfared* and Seyed Majid Hosseini

Department of Chemistry, University of Zanjan, 45195-313 Zanjan, Iran. E-mail: <u>monfared@znu.ac.ir</u> (H. Hosseini-Monfared); Tel.: +98 24 33052576; Fax: +98 24 33583203.

Contents

Fig. S1 FT-IR spectra of graphite and GO	1
Fig. S2. Comparison of the FT-IR spectra of the fresh and used catalyst GFC-[Mn(L)(OH)]	2
Fig. S3 ¹ H-NMR of ligand H_2L	3
Fig. S4 13 C-NMR of ligand H ₂ L	4
Fig. S5 ¹ H-NMR spectrum the oxidation of cis-stilbene	5
Table S1 Asymmetric oxidation of styrene catalyzed by different heterogenized Mn complexs.	6
Fig. S6 GC-chromatograms of the olefin epoxidation catalyzed by GFC- [Mn(L)(OH)]/O ₂ /iPrCHO1	0
Fig. S7 GC-chromatograms of the olefin epoxidation catalyzed by GFC-	
$[Mn(L)(OH)]/O_2/iPrCHO$ in CH ₃ CN analyzed by a using a chiral SGE-CYDEX-B capillary	
column14	4

Fig. S1 FT-IR spectra of graphite and GO.

Fig. S2. Comparison of the FT-IR spectra of the fresh and used catalyst GFC-[Mn(L)(OH)]

Fig. S3 ¹H-NMR of ligand H₂L ((1*R*,2*S*)-1-(N-salicylideneamino)-2-indanol) in $CDCl_3$

Fig. S4 $^{13}\text{C-NMR}$ of ligand H_2L ((1*R*,2*S*)-1-(N-salicylideneamino)-2-indanol) in CDCl_3

Fig. S5 ¹H-NMR spectrum in $CDCl_3$ of the crude product obtained upon oxidation of cis-stilbene provided 100% conversion with 39% cis-epoxide, 61% trans-epoxide(R,R).

Table S1 Asymmetric oxidation of styrene catalyzed by different heterogenized Mn complexs.

	н	Н		сно 							
$\begin{array}{c c} \hline \\ \hline $											
No.	Catalyst	Oxidant	Time (h)	Epoxide Yield (%)	ee%	Ref.					
1	GFC-[Mn(L)(OH)]	O ₂	2	78	67	This work					
2	GO B=	m-CPBA	6	90	65	S1					
3	HO GO B=	m-CPBA	4	93	61	S1					
4	Mn ²⁺ /GO nanocomposite	H ₂ O ₂	0.5	>99	-	S2					
5	$ \begin{array}{c} \iota \partial u = \displaystyle \int_{C} $	NaClO	1	92	40	S3					
6	$\begin{array}{c} \begin{array}{c} & & \\ $	NaClO	1	68	36	S3					

7	$ \begin{array}{c} C_4H_9 \\ \hline C_4H_9 \\ \hline O \\ O \\$	m-CPBA	2	39	18	S4
---	--	--------	---	----	----	----

CHO

> 6.603

'n

MeCN

3.658

60000

40000

20000

0

Fig. S6 GC-chromatograms of the olefin epoxidation catalyzed by GFC-[Mn(L)(OH)]/O₂/iPrCHO in CH₃CN analyzed by a HP-5 capillary column (phenyl methyl siloxane 30 mm×320 μ m×0.25 μ m). Conditions: initial temperature 90 °C for 0.1 min, slope 10 °C/min, final temperature 190 °C for 10 min. Flow rate 0.7 mL/min.

Fig. S7 GC-chromatograms of the olefin epoxidation catalyzed by GFC-[Mn(L)(OH)]/O₂/iPrCHO in CH₃CN analyzed by a using a chiral SGE-CYDEX-B capillary column (25 m × 0.22 mm × 0.25 μ m). Conditions: initial temperature 50 °C for 0.1 min, slope 10 °C/min, final temperature 150 °C for 10 min. Flow rate 0.7 mL/min.

10

12.5

15

17.5

min

7.5

2.5

5

- S1. M. Nasseri, A. Allahresani and H. Raissi, *RSC Adv.*, 2014, 4, 26087.
- S2. W. Zheng, R. Tan, L. Zhao, Y. Chen, C. Xiong and D. Yin, *RSC Adv.*, 2014, **4**, 11732.
- S3. W. Zheng, R. Tan, S. Yin, Y. Zhang, G. Zhao, Y. Chen and D. Yin, *Catal. Sci. Technol.*, 2015, **5**, 2092.
- S4 I. Kuźniarska-Biernacka, C. Pereira, A. Carvalho, J. Pires and C. Freire, *Appl. Clay Sci.* 2011, **53**, 195.