Facile synthesis of Cu₃(BTC)₂/cellulose acetate mixed matrix membranes and their

catalytic applications in continuous flow process

Junying Hou,^a Yi Luan,^a Xiubing Huang,^a Hongyi Gao,^a Mu Yang^a and Yunfeng Lu^{*b}

^a Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.

^b Department of Materials Science and Engineering, University of California, Los Angeles, CA 90034, USA. E-mail: <u>luucla@ucla.edu</u>; Tel: 310-794-7238.

Supporting Information

Scheme S1. Schematic illustration of the $Cu_3(BTC)_2$ MMMs preparation.

Fig.S1 The experimental set-up for continuous flow experiments.

Fig. S2 optical photographs of the CA membrane (a), Cu-BTC-0.6 MMM (b).

Fig. S3 SEM images of CA membranes (a) Cu-BTC-0.4 MMM (b), the Cu-BTC-0.5 MMM (b) and the Cu-BTC-0.6 MMM (d).

Fig. S4 XRD pattern of Cu-BTC-0.4 MMM (black), the Cu-BTC-0.5 MMM (red) and the Cu-BTC-0.6 MMM (blue).

Fig. S5 FT-IR spectra of the Cu-BTC-0.4 MMM (black), the Cu-BTC-0.5 MMM (red) and the Cu-BTC-0.6 MMM (blue).

Fig. S6 N_2 adsorption-desorption isotherms and the pore size distributions of CA membrane (a), Cu-BTC (b), Cu-BTC-0.4 (c) and Cu-BTC-0.5 (d).

Fig. S8 Acetalization of benzaldehyde with ethanol as a function of time on the $Cu_3(BTC)_2$ -0.6 MMM.