Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information for New Journal Of Chemistry

Supplementary Information

CdTe nanoparticles decorated titania for dye sensitized solar cell: A novel co-sensitizer approach towards highly efficient energy conversion

Sayantani Bhattacharya and Jayati Datta^{*}

Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711 103, Bengal, India

Email - jayati_datta@rediffmail.com

*correspondence to: Tel.: +91 33 2668 4561-4563x514; Fax: +91 33 2668 2916.

Fig. S1. UV Visible absorption spectra for TiO₂, CdTe, and TiO₂-CdTe matrices.

Fig. S2. Mott-Schottky plots of CdTe and TiO₂-CdTe/ I⁻- I₃⁻/ Pt system, (Inset : Mott-Schottky plot of TiO₂/ I⁻- I₃⁻/ Pt system).

The experimental work have determined the nature (carrier type) of the SCs and found each of the matrices TiO₂ (wide band gap), CdTe (low band gap) and the TiO₂-CdTe hybrid structure, belonging to the n type category and hence could be used as the DSSC anode components. The nature of the matrices were determined by the capacitance-voltage experiment as demonstrated below and relevant information were obtained using Mott-Schottky relation as reported in many of the earlier work [J. Datta, A. Jana, C. Bhattacharya and S. Bandyopadhyay, *Electrochim. Acta*, 2009, 54, 5470–5478], [M. C. K. Sellers and E. G. Seebauer, *Thin Solid Films*, 2011, 519, 2103–2110], [R. V. D. Krol, A. Goosens, and J. Schoonman, *J. Electrochem. Soc.*, 1997, 144, 1723-1727].

$$\frac{1}{C^2} = \frac{2}{q\varepsilon\varepsilon_0 N_D} \left[V - V_{FB} - \left(\frac{KT}{q}\right) \right]$$

Fig. S2 with the inset demonstrates the Mott-Schottky plots at a frequency 1 kHz using three electrode assembly cell consisting of the respective SC matrices as working electrodes, saturated calomel as reference electrode and Pt counter electrode in 0.05 M iodine-iodide solution as working electrolyte used for the DSSCs. The plots in **Fig. S2** exhibited positive slopes (S1, S2 and S3) for each of the matrices confirming n type semiconductor.

Fig. S3. Intensity variation of light illumination in *J-V* plot for TiO₂-N3 fabricated DSSC.

Fig. S4. *J-V* plot for the CdTe deposited under various scan in $TiO_2 - CdTe -N3$ fabricated DSSC under 50 mW cm⁻² light intensity

Table S1. *J-V* parameters recorded for TiO₂-CdTe-N3 fabricated DSSC at different cycles in cyclic voltammetric process for deposition of CdTe over TiO₂ and bare TiO₂-N3 system.

Anode matrix	J _{sc} (mA cm ⁻²)	η %	V _{oc} (V)	FF (%)
TiO ₂ -CdTe(10)	10.1	7.7	0.80	47.38
TiO ₂ -CdTe(30)	10.2	7.92	0.81	47.5
TiO ₂ -CdTe(50)	12.30	11.10	0.80	55.70
TiO ₂ -CdTe(70)	8.91	7.14	0.80	49.57
TiO ₂ -CdTe(100)	8.78	6.99	0.79	50.2
TiO ₂ -CdTe(120)	8.69	6.57	0.80	47.08
TiO ₂	8.63	6.69	0.79	48.53

Fig. S5. (a) Nyquist diagram with fitted equivalent circuit for TiO₂ and TiO₂ – CdTe (50cycle)-N3 fabricated DSSC (Inset b: Magnified view of Nyquist diagram at high frequency region), (Inset c: Bode phase shift plot for the respective cells).

	$R_{\rm S}\left(\Omega ight)$	$R_{\rm CE}(\Omega)$	$R_{\mathrm{CT}}(\Omega)$	CPE1(mMho)	CPE2(mMho)
TiO ₂ -N3	14.1	13.3	61.1	0.414	0.586
TiO ₂ - CdTe-N3	12.4	1.97	8.30	0.303	3.06

Table S2. EIS parameters obtained from equivalent circuit fitted Nyquist plots

It is to be noted that there is only 10 mV positive shift of V_{OC} for CdTe modified system with respect to the bare TiO₂. Although the change is not very significant, huge difference in polarization resistance is obtained from the Nyquist plots as derived from the impedance spectra. *R*p for TiO₂-N3 is 70.47 Ω while that for TiO₂-CdTe-N3 is only 9.91 Ω which indicate that the oxidative charge transfer process at the DSSC anode, requires much less threshold energy for the TiO₂-CdTe structure compared to TiO₂ alone. A number of reports are available which have demonstrated that with increase in V_{OC} there is considerable reduction in polarization or charge transfer resistances [J. Datta, A. Jana, C. Bhattacharya and S. Bandyopadhyay, *Electrochim. Acta*, 2009, 54, 5470–5478], [N. Yang, J. Zhai, D. Wang, Y. Chen and L. Jiang, *ACS Nano*, 2010, 4, 887–894].

Fig. S6. Power output plot derived from J-V analysis of TiO₂ and TiO₂-CdTe matrix fabricated DSSC using N3 dye at 50 mW cm⁻².

Fig. S7. (a) J-V plot of $TiO_2 - N3$ based DSSC under 50 mW cm⁻² for 3 hours with 15

minutes time interval and (b) J-V plot of TiO₂-CdTe-N3 based DSSC under 50 mW cm⁻² for 3 hours with 15 minutes time interval.

Fig. S8. (a) Anodic stripping voltammogram of Cd of TiO_2 -CdTe (30cycle) matrix.(b) Current Vs. Concentration (ppm) of CdTe (30cycle) coated TiO_2 matrix in NaClO₄ aqueous electrolyte following potentiodynamic polarization study.

Fig. S9. (a) Anodic stripping voltammogram of Cd of TiO_2 -CdTe (70cycle) matrix.(b) Current Vs. Concentration (ppm) of CdTe (70cycle) coated TiO_2 matrix in NaClO₄ aqueous electrolyte following potentiodynamic polarization study.

Fig. S10. Periodic Cycles vs. (a) Efficiency (b) fill factor FF% and (c) short circuit current density *J*sc, values derived for the DSSC showing mean deviation from four experimental results.