Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting information

IrO₂-TiO₂ electrocatalyst for the hydrogen evolution reaction in

acidic water electrolysis without activation

Min Yuan, Yuchan Zhu, Li Deng, Ruoxi Ming, Ailian Zhang, Wenyang Li, Bo Chai and Zhandong Ren*

School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.

E-mail: renzhandong@163.com

Fig. S1⁺ SEM diagrams of IrO₂-TiO₂ composite oxides (TiO₂ mol%=14%) and IrO₂ oxides with different calcination temperature. IrO₂-TiO₂: (a) 450 °C, (b) 500 °C, (c) 550 °C, (d) 600 °C; IrO₂ : (e) 450 °C, (f) 550 °C.

Fig. S2⁺ N₂ adsorption/desorption isotherms of IrO₂-TiO₂ composite oxide (TiO₂ mol%=14%, Calcination temperature 550°C).

Fig. S3+ X-ray fluorescence spectrometry of Ir and Ti in IrO_2 -TiO₂ composite oxide (TiO₂ mol%=14%, Calcination temperature 550°C).

Fig. S4+ XRD diagrams of IrO_2 -TiO₂ complex oxides (TiO₂ mol%=14%) with different calcination temperature.

Fig. S5⁺ Cyclic voltammograms in 0.5 mol·L⁻¹ H_2SO_4 solution at a sweeping rate of 100 mV·s⁻¹ for IrO_2 -TiO₂ electrodes with different mole fraction TiO₂ at the calcined temperature 550°C.

Fig. S6⁺ The equivalent circuit of the impedance of IrO_2 -TiO₂ and IrO_2 electrodes.

	experimenta	I data to $R_{\rm s}(R_{\rm c})$	_t C _{dl}) equivalent	circuit.	
	Rs	<i>R</i> _{ct}	C _{dl}		

Table S2 ⁺ Impedance parameters of IrO_2 -TiO ₂ and IrO_2 electrodes obtained by finding the first sector of the sector of	tting the
experimental data to $R_s(R_{ct}C_{dl})$ equivalent circuit.	

Flootrocatabust	R _s	R _{ct}	C_{dl}	n _{dl}	R _f
Electrocatalyst	/Ω·cm²	/Ω·cm²	/mF·cm⁻²		
IrO ₂	11.32	198.7	1.13	0.77671	56.5
IrO ₂ -TiO ₂	9.281	48.00	2.70	0.92944	135

Fig. S7⁺ XRD diagram of IrO_2 -TiO₂ complex oxide (TiO₂ mol%=14%, calcination temperature 550°C) and IrO_2 (calcination temperature 550°C).