Supporting information for

Facile synthesis and characterization of Fe₃O₄@MgAl-LDH@STPOM nanocomposite with highly enhanced and selective degradation of methylene blue

Azra Ghiasi Moaser^a, Roushan Khoshnavazi^{a*}

^aDepartment of chemistry, University of Kurdistan P.O. Box 66135-416, Sanandaj, Iran

Mechanism schematic

Based on our observation we attempted to propose a mechanism schematic.

The empirical evidences were 1) in the absence of the H₂O₂, with Fe₃O₄@MgAl–LDH@Ce₃W₁₈ as catalyst the main process was only dye removal via the surface adsorption 2) The molecular oxygen was bubbled by adding of H₂O₂ to the MB solution containing the catalyst 3) although the catalyst color variation for Fe₃O₄@MgAl–LDH@Ce₃W₁₈ was not observable but the color of MgAl–LDH@Ce₃W₁₈ composite was turned from yellow to brown by adding of H₂O₂. As mentioned before, the high negative charge of Ce₃W₁₈ play a key role in the removal of cationic methylene blue dye¹. Release of the molecular oxygen is attributed to oxidation of H₂O₂ on the catalyst. The observed catalyst color change is attributed to the reduction of Ce⁴⁺ centers of Ce₃W₁₈. In the process, firstly the functional group of MB molecules might be adsorbed on the surface of composite. In the presence of H₂O₂, the Ce⁴⁺ centers in the Ce₃W₁₈ are reduced to the Ce³⁺. The corresponding POM with Ce³⁺centers is brown in color². On the basis of ref. 3, cerium

(R. Khoshnavazi)

Fax/Tel: +98 87336224133

^{*}Corresponding Author: *E-mail address* :

r.khoshnavazi@uok.ac.ir, khoshnavazi@yahoo.com,

has attracted particular attention because of its outstanding ability to store/release oxygen as an oxygen storage via facile reciprocal transformation of Ce^{4+} and Ce^{3+} under oxidizing and reducing conditions respectively³. Due to this feature, activated oxygen species produced from the oxidation of H_2O_2 may be stored on the composite which in turn, it may be responsible for oxidation of MB and reoxidation of reduced $Ce_3W_{18}^{4,5}$.

The schematic of proposed mechanism for catalytic degradation of methylene blue by

 $Fe_{3}O_{4}@MgAl-LDH@Ce_{3}W_{18}\\$

EDX and SEM analyses

EDX analysis of reused catalyst (after sixth cycle) demonstrates that all of the elements of $Fe_3O_4@MgAl-LDH@Ce_3W_{18}$ composites exist in the sample. According to the SEM pattern of the recovered catalyst, after sixth cycle, the morphology in compare with the fresh sample almost remains intact. The observed small difference is raised because of decreasing the density of the covered shell during six cycles.

The EDX and SEM analyses of Fe₃O₄@MgAl-LDH@Ce₃W₁₈

References:

- 1 B. Bi, L. Xu, B. Xu and X. Liu, *Appl. Clay Sci.*, 2011, **54**, 242–247.
- A. Tomsa, L. Muresan, A. Koutsodimou, P. Falaras and M. Rusu, *Polyhedron*, 2003, 22, 2901–2909.
- J. Zhou, W. Hou, P. Qi, X. Gao, Z. Luo and K. Cen, *Environ. Sci. Technol.*, 2013, 47, 10056–10062.
- 4 R. M. La, K. F. Hollow, L. Zou, Q. Wang, Z. Wang, L. Jin, R. Liu and X. Shen, *Ind. Eng.*

Chem. Res., 2014, 53, 658–663.

Y. Jin, N. Li, H. Liu, X. Hua, Q. Zhang, M. Chen and F. Teng, *Dalt. Trans.*, 2014, 43, 12860–12870.