Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

# **Supporting Information**

# Photoluminescent and magnetic analysis of a family of lanthanide(III) complexes based on diclofenac

E. Echenique-Errandonea,<sup>a</sup> I. Oyarzabal,<sup>a</sup> J. Cepeda,<sup>a</sup> E. San Sebastian,<sup>a</sup> A. Rodríguez-Diéguez<sup>\*b</sup> and J. M. Seco<sup>\*a</sup>

<sup>a</sup> Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, 20018, San Sebastián, Spain. <sup>b</sup> Departamento de Química Inorgánica, Universidad de Granada, 18071, Granada, Spain.

#### Index:

- 1. Elemental Analyses and Bond lengths and angles.
- 2. Additional Figures.
- 3. Experimental PXRD.
- 4. Continuous Shape Measurements.
- **5. Magnetic Properties**
- 6. Luminescence Properties.
- 7. TD-DFT calculations.

# 1. Elemental Analyses and Crystallographic Tables.

| Complex | Yield (%) | Formula                                                                | %C<br>calc./found | %H<br>calc./found | %N<br>calc./found |
|---------|-----------|------------------------------------------------------------------------|-------------------|-------------------|-------------------|
| 1       | 68.47     | $C_{86}H_{72}Cl_{12}Pr_{2}N_{6}O_{16}$                                 | 46.62/46.73       | 2.99/3.05         | 3.92/3.85         |
| 2       | 60.47     | $C_{86}\:H_{72}\:CI_{12}\:Nd_{2}\:N_{6}\:O_{16}$                       | 46.61/46.75       | 2.98/3.03         | 3.94/3.88         |
| 3       | 67.90     | $C_{86}H_{72}CI_{12}Sm_{2}N_{6}O_{16}$                                 | 47.38/47.56       | 2.95/3.34         | 3.95/3.87         |
| 4       | 68.33     | $C_{86}\:H_{72}\:CI_{12}\:Eu_{2}\:N_{6}\:O_{16}$                       | 47.37/47.49       | 3.06/3.34         | 3.88/3.86         |
| 5       | 67.89     | $C_{86}H_{72}Cl_{12}Tb_{2}N_{6}O_{16}$                                 | 47.15/47.19       | 3.17/3.32         | 3.89/3.84         |
| 6       | 65.30     | $C_{86}H_{72}CI_{12}Dy_2N_6O_{16}$                                     | 46.98/47.04       | 3.14/3.30         | 3.90/3.83         |
| 7       | 67.58     | ${\sf C}_{86}{\sf H}_{72}{\sf CI}_{12}{\sf Ho}_2{\sf N}_6{\sf O}_{16}$ | 46.87/46.93       | 2.98/3.30         | 3.87/3.82         |
| 8       | 63.56     | $C_{86}H_{72}Cl_{12}Er_{2}N_{6}O_{16}$                                 | 46.75/46.83       | 3.10/3.29         | 3.86/3.81         |
| 9       | 61.86     | ${\sf C}_{86}{\sf H}_{72}{\sf CI}_{12}{\sf Tm}_2{\sf N}_6{\sf O}_{16}$ | 46.58/46.76       | 3.24/3.29         | 3.83/3.80         |
| 10      | 68.89     | $C_{86}\:H_{72}\:CI_{12}\:Yb_2\:N_6\:O_{16}$                           | 46.42/46.59       | 3.08/3.27         | 3.85/3.79         |

Table S.1. Yields and elemental analyses for complexes 1-10.

| Bond distances (Å) | 1      | 6      |
|--------------------|--------|--------|
| Ln101A             | 2.501  | 2.414  |
| Ln102A             | 2.504  | 2.430  |
| Ln101B             | 2.521  | 2.450  |
| Ln1O2B             | 2.593  | 2.491  |
| Ln101C             | 2.528  | 2.442  |
| Ln102C             | 2.421  | 2.329  |
| Ln1O2C'            | 2.619  | 2.548  |
| Ln101M             | 2.487  | 2.375  |
| Ln101W             | 2.475  | 2.361  |
| Ln1Ln1'            | 4.513  | 4.059  |
| Bond angles (°)    |        |        |
| 01A Ln102A         | 52.11  | 53.67  |
| O1B Ln1O2B         | 51.15  | 52.84  |
| 01C Ln102C         | 50.46  | 51.87  |
| 02C Ln102C'        | 69.09  | 67.39  |
| Ln102CLn1'         | 110.91 | 112.61 |
| 01WLn101M          | 83.88  | 82.63  |

Table S2.- Bond lengths (Å) and angles (°) for compounds 1 and 6.

Table S3.Structural parameters of hydrogen bonds (Å, °) in compound 1.<sup>a</sup>

| $D-H\cdots A^b$ | D–H  | H···A | D…A      | D–H…A |
|-----------------|------|-------|----------|-------|
| O1w–H1wa…O1B(i) | 0.88 | 1.91  | 2.741(2) | 155.8 |
| O1w–H1wb…O1A(i) | 0.88 | 1.94  | 2.758(2) | 153.1 |

<sup>a</sup>Symmetry codes: (i) –x, –y, –z. <sup>b</sup>D: donor. A: acceptor.

#### Table S4.Structural parameters of hydrogen bonds (Å, °) in compound 6.<sup>a</sup>

| $D-H\cdots A^b$ | D–H  | Н…А  | D…A      | D−H…A |
|-----------------|------|------|----------|-------|
| O1w–H1wa…O1A(i) | 0.85 | 2.02 | 2.830(5) | 159.7 |
| O1w–H1wb…O1B(i) | 0.85 | 1.99 | 2.743(4) | 145.7 |

<sup>a</sup>Symmetry codes: (i) –x, –y, –z. <sup>b</sup>D: donor. A: acceptor.

# 2. Additional Figures.



Figure S1.- View of the 3D packing of chains in complex 1 along the crystallographic *bc* plane.

#### 3. Experimental XRPD.





Figure S2.- Pattern-matching analyses and experimental PXRD for complexes 1-10.



Figure S3.- Theoretical XRPD spectra of complex 1. Complexes 1-10 were compared with this theoretical spectrum.

## 4. Continuous Shape Measurements.

| EP-9     | 1 D9h  | Enneagon                           |
|----------|--------|------------------------------------|
| OPY-9    | 2 C8v  | Octagonal pyramid                  |
| HBPY-9   | 3 D7h  | Heptagonal bipyramid               |
| JTC-9    | 4 C3v  | Johnson triangular cupola J3       |
| JCCU-9   | 5 C4v  | Capped cube J8                     |
| CCU-9    | 6 C4v  | Spherical-relaxed capped cube      |
| JCSAPR-9 | 7 C4v  | Capped square antiprism J10        |
| CSAPR-9  | 8 C4v  | Spherical capped square antiprism  |
| JTCTPR-9 | 9 D3h  | Tricapped trigonal prism J51       |
| TCTPR-9  | 10 D3h | Spherical tricapped trigonal prism |
| JTDIC-9  | 11 C3v | Tridiminished icosahedron J63      |
| HH-9     | 12 C2v | Hula-hoop                          |
| MFF-9    | 13 Cs  | Muffin                             |

 Table S5.- Continuous Shape Measurements for the LnO9 coordination environment.

| Complex | JCSAPR-9 | CSAPR-9 | TCTPR-9 | MFF-9 |
|---------|----------|---------|---------|-------|
| 1       | 3.786    | 2.639   | 2.842   | 2.519 |
| 6       | 3.594    | 2.497   | 2.653   | 2.228 |

## 5. Magnetic Properties.



**Figure S4.**- Theoretical orientation of the magnetic moments (green line) for Dy<sup>III</sup> ions in complex **6**. The upper figure shows the asymmetrical unit.

#### 6. Luminescence Properties.



Figure S5.- Excitation spectra monitored at 619 nm for 4 (top) and 546 nm for 5 (down) compounds recorded at 10 K.



Figure S6.- Thermal evolution of the emission spectrum of compound 4 excited at 325 nm.



Figure S7.- Emission spectra at 10 K for **3** (top) and **6** (down). The inset shows magnified image of the weakest emission band corresponding to the:  ${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$  transition.



**Figure S8.**- Excitation spectra at 10 K for **3** (top) and **6** (down) focusing at 562 and 480 nm, respectively.



**Figure S9.**- Luminescence decay lifetime fits of **4** (Eu) monitored at  ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$  transition.



**Figure S10.**- Luminescence decay lifetime fits of **5** (Tb) monitored at  ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$  transition.

#### 7. TD-DFT calculations.

| Calcd. λ (nm) | Exp. λ (nm) | Significant contributions                                                                                          | Osc. strength (a.u.) |
|---------------|-------------|--------------------------------------------------------------------------------------------------------------------|----------------------|
| 213           | 220         | HOMO – 6 $\rightarrow$ LUMO (32%)<br>HOMO – 3 $\rightarrow$ LUMO + 4 (51%)<br>HOMO – 4 $\rightarrow$ LUMO + 3 (8%) | 0.1681               |
| 221           | 220         | HOMO – 6 → LUMO (23%)<br>HOMO – 5 → LUMO + 1 (47%)<br>HOMO – 3 → LUMO + 4 (22%)                                    | 0.0538               |
| 310           | 330         | HOMO – 3 → LUMO + 1 (91%)<br>HOMO – 2 → LUMO + 4 (4%)                                                              | 0.1303               |
| 321           | 330         | HOMO – 2 → LUMO + 3 (82%)<br>HOMO – 3 → LUMO + 1 (4%)<br>HOMO – 2 → LUMO + 4 (3%)                                  | 0.0407               |

**Table S6.** Calculated main excitation energies (nm) and singlet electronic transitions andassociated oscillator strengths of diclofenac molecule in gas phase.

**Table S7**. Calculated main emission energies (nm) and singlet electronic transitions and associated oscillator strengths of diclofenac molecule in gas phase.

| Calcd. λ (nm) | Exp. λ (nm) | Significant contributions                         | Osc. strength (a.u.) |
|---------------|-------------|---------------------------------------------------|----------------------|
| 370           | 386         | HOMO – 3 ← LUMO + 1 (96%)                         | 0.0844               |
| 365           | 386         | HOMO – 3 ← LUMO + 1 (96%)                         | 0.0681               |
| 486           | 462         | HOMO – 2 ← LUMO + 1 (94%)<br>HOMO ← LUMO + 2 (5%) | 0.0099               |







**Figure S12.-** Highly Occupied Molecular Orbitals of diclofenac molecule involved in the singlet emission transitions.





LUMO + 3



**Figure S13.**- Lowest Unoccupied Molecular Orbitals of diclofenac molecule involved in the singlet excitation transitions.



**Figure S14.-** Lowest Unoccupied Molecular Orbitals of diclofenac molecule involved in the singlet emission transitions.