Supporting Information

Design, synthesis and properties of a reactive chromophoric/

fluorometric probe forhydrogen peroxide detection

Yu Zhang ^{a,b}, Zinuo Jiao ^b, Wei Xu ^b, Yanyan Fu ^b, Jiaqiang Xu ^a, Qingguo He ^b*, Defeng Zhu ^b, Huimin Cao ^b and Jiangong Cheng ^b*

^aDepartment of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

^bState Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865,Shanghai 200050, China.

E-mail: hqg@mail.sim.ac.cn; jgcheng@mail.sim.ac.cn.

Catalogue

Suppo	rting Information1
1	Table S1. Detail methodology and parameters of DMol3
2	¹ H-NMR spectra, ¹³ C-HMR spectra and Mass spectra
4	Boronate oxidation reaction9
3	Figures for detailed sensing performance9
4	Detail information about linear fit10
5	DMol3 optical absorption spectrum of Anthracene, AVP, and
A	VPM11
6	The selectivity of fluorescent probe12
7	Detection limit measurements12
8	A summary of chromophoric/flourescent probes for hydrogen
pe	roxide detection13
Re	eference14

DMol3					
Task	Geometry Optimization				
Properties	Optics, Orbitals				
Energy	1.0 ⁻⁵ Ha				
Max. force	0.002Ha/Å				
Max. displacement	0.005Å				
Max. interations	50				
Max. step size	0.3Å				
Functional	GGA,BLYP				
Integration accuracy	Fine				
SCF tolerance	Fine				
Core treatment	All Electron				
Basis set	DNP+				
Basis file	4.4				
Orbital cutoff quality	Fine				
Run in parallel on	12 ores				

1 Table S1. Detail methodology and parameters of DMol3

2 ¹H-NMR spectra, ¹³C-HMR spectra and Mass spectra

Figure S1. ¹H-NMR spectra of 10-bromoanthracene-9-carbaldehyde 1.

Figure S2.¹³C-HMR spectra of 10-bromoanthracene-9-carbaldehyde 1.

Figure S3. ¹H-NMR spectra of 10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)anthracene-9-carbaldehyde **2**.

Figure S4. ¹³C-HMR spectra of 10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)anthracene-9-carbaldehyde **2**.

Figure S5. ¹H-NMR spectra of 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile **3**.

Figure S6. ¹³C-HMR spectra of 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile **3**.

Figure S7. ¹H-NMR spectra of 2-(2,6-bis((E)-2-(10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) anthracen-9-yl)vinyl)-4H-pyran-4-ylidene)malononitrile **AVPM**.

Figure S8. ¹³C-HMR spectra of 2-(2,6-bis((E)-2-(10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) anthracen-9-yl)vinyl)-4H-pyran-4-ylidene)malononitrile **AVPM**.

Figure S9. ¹H-NMR spectra of 2-(2,6-bis((E)-2-(10-hydroxyanthracen-9-yl)vinyl)-4H-pyran-4-ylidene)malononitrile **HAVPM**.

Figure S10. ¹³C-NMR spectra of 2-(2,6-bis((E)-2-(10-hydroxyanthracen-9-yl)vinyl)-4H-pyran-4-ylidene)malononitrile **HAVPM**.

4 Boronate oxidation reaction.

Figure S11. H₂O₂-mediated oxidation of AVPM to give HAVPM.

3 Figures for detailed sensing performance

Figure S12. The fluorescence turn-off reaction between AVPM and H_2O_2 was found to be related to the concentration of TEA (4.76 mM; 9.52 mM; 11.9 mM).

4 Detail information about linear fit

Figure S13. A plot of fluorescence quenching efficiency $(1-I/I_0)$ at 596 nm as a function of H_2O_2 concentration. Red line: linear calibration curve in the presence of TEA (11.9 mM). Blue line: linear calibration curve in the absence of TEA.

5 DMol3 optical absorption spectrum of Anthracene, AVP, and AVPM.

Figure S14. DMol3 optical absorption spectrum of Anthracene.

Figure S15. DMol3 optical absorption spectrum of AVP.

Figure S16. DMol3 optical absorption spectrum of AVPM.

6 The selectivity of fluorescent probe

Figure S17. Relative fluorescence intensity at 596 nm of AVPM when in contact with different interferents. (A: H_2O_2 ; B: TATP; C: DADP; D: $CH_4N_2O \cdot H_2O_2$; E: H_2O ; F: CH_2Cl_2 ; G: acetonitrile; H: acetone; I: ethyl acetate).

7 Detection limit measurements

Detection limit measurements of AVPM with respect to H_2O_2 were performed based on the previous literature.¹⁻³ Fluorescence quenching efficiency (1-I/I₀) were plotted against the concentrations to obtain a linear plot, and the gradient (*k*) of the plot was then obtained. The maximum emission intensity of AVPM was measured twenty times, and the standard deviation (δ) of these measurements was obtained. Lastly, detection limit was calculated with the following formula.

Detection Limit
$$\Box 3 \frac{D}{k}$$

Where δ is the standard deviation of blank measurement (the maximum emission intensity of AVPM was measured twenty times), k is the slop between the fluorescence emission intensity versus H₂O₂ concentration.

Concentration				Mean	Standard Deviation
nM					
				Statistics	Statistics
326000	0.41	0.41	0.39	0.4	0.0088
32600	0.33	0.34	0.33	0.33	0.0062
3260	0.25	0.25	0.26	0.25	0.0028
326	0.21	0.22	0.21	0.21	0.0033
163	0.2	0.19	0.19	0.19	0.0031
81.5	0.18	0.18	0.19	0.18	0.0028
40.8	0.15	0.15	0.15	0.15	0.0023
20.4	0.14	0.14	0.14	0.14	0.0024

Figure S18. Fluorescence quenching efficiency $(1-I/I_0)$ of AVPM $(1 \times 10^{-5} \text{ M})$ upon addition of H_2O_2 with concentrations from $2.04 \times 10^{-8} \text{ M}$ to $3.26 \times 10^{-4} \text{ M}$ in THF.

8 A summary of chromophoric/flourescent probes for hydrogen peroxide

detection.

Table S2: A	summary	of	chromophoric/flourescent	probes	for	hydrogen peroxide
detection.						

Probe	Practical Application	Time	LOD	References
Ti(IV) oxo complexes	peroxide explosives		ppb(vapor)	[4]
CGP with AuNPs	in pH7.4 and 25° C	0.5 h	20 µM	[5]
PB NPs	in ABTS-H ₂ O ₂ system	10 min	0.031µM	[6]
Pd/CoFe ₂ O ₄ composite	in acetate putter solution	10 mm	1.08 μινι	[7]
HPPtCuDs	in TMB-H ₂ O ₂ system		0.1µM	[8]
PDMS-TEOS-SiO ₂ NPs biocomposite	in TMB-HRP- H ₂ O ₂ system	15 min	1.3µM	[9]
nanocomposites	In INIB-H ₂ O ₂ system	1 11111	υ.19μινι	[10]
MnSe-g-C ₃ N ₄	in TMB-H ₂ O ₂ system		1.8µM	[11]
V ₂ O ₅ nanozymes	in TMB-OPD-H ₂ O ₂ system		10 µM	[12]
PF1	in vitro	5 min	100 nM	[13]
CPF1	in solution	20 min		[14]
QCy7 fluorescein-and	PBS 7.4 [50 μ M] solutions	30 min		[15]
rhodol-based	in biological systems			[16]
naphthalimide-based	in 0.1 M phosphate buffer (0.2% DMSO), pH 7.4	120 min		[17]
TPE-BO	In methanol solution in DMSO/phosphate_buffer		0.52 μΜ	[18]
Mito-H ₂ O ₂	(1:99 v/v, 20 mM, pH 7.4)	5 min	0.04 µM	[19]
ABA-HP	In 50% HEPES/DMSO,pH 7.4	30 min	1µM	[20]
Lyso-HP	in live tissue	20 min	1.21µM	[20
boronobenzo[b]-	in phosphate buffer (0.1M, $pH = 7.4$)	140 min	3. υ μινι	21 []
AVPM	in THF solution	2 min	17.58 nM	This work

Reference

- L. L. Long, L. P. Zhou, L. Wang, S. C. Meng, A. H. Gong, F. Y. Du and C. Zhang, *Org.Biomol. Chem.*, 2013, **11**, 8214-8220.
- 2. C. Y. Ang, S. Y. Tan, S. Wu, Q. Qu, M. F. E. Wong, Z. Luo, P.-Z. Li, S. Tamil Selvan and Y. Zhao, *J. Mater. Chem. C*, 2016, **4**, 2761-2774.
- 3. J. Xu, Q. Li, Y. Yue, Y. Guo and S. J. Shao, *Biosens. Bioelectron.*, 2014, **56**, 58-63.
- 4. M. Xu, B. R. Bunes and L. Zang, *ACS Appl. Mater. Interfaces.*, 2011, **3**, 642-647.
- 5. C. Li, J. Hu, T. Liu and S. Liu, *Macromolecules*, 2011, **44**, 429-431.
- 6. W. M. Zhang, D. Ma and J. X. Du, *Talanta*, 2014, **120**, 362-367.
- 7. Z. Yang, Z. Zhang, Y. Jiang, M. Chi, G. Nie, X. Lu and C. Wang, *RSC Adv.*, 2016, **6**, 33636-33642.
- 8. Y.Lu, W. Ye, Q. Yang, J. Yu, Q. Wang, P. Zhou, C. Wang, D. Xue and S. Zhao, *Sens. Actuators, B*, 2016, **230**, 721-730.
- 9. J. Pla-Tolós, Y. Moliner-Martinez, C. Molins-Legua and P. Campins-Falcó, *Sens. Actuators, B*, 2016, **231**, 837-846.
- Q. Y. Liu, Y. L. Jiang, L. Y. Zhang, X. P. Zhou, X. T. Lv, Y. Y. Ding, L. F. Sun, P. P. Chen and H. L. Yin, *Mater Sci Eng C* 2016, 65, 109-115.
- 11. F. Qiao, Q. Qi, Z. Wang, K. Xu and S. Ai, Sens. Actuators, B, 2016, 229, 379-386.
- 12 J. Sun, C. Li, Y. Qi, S. Guo and X. Liang, Sensors (Basel), 2016, 16.
- 13. M. C. Y. Chang, A. Pralle, E. Y. Isacoff and C. J. Chang, *J. Am. Chem. Soc.*, 2004, **126**, 15392-15393.
- 14. M. S. Purdey, J. G. Thompson, T. M. Monro, A. D. Abell and E. P. Schartner, *Sensors (Basel)*, 2015, **15**, 31904-31913.
- 15. N. Karton-Lifshin, E. Segal, L. Omer, M. Portnoy, R. Satchi-Fainaro and D. Shabat, *J. Am. Chem. Soc.*, 2011, **133**, 10960-10965.
- 16 B. C. Dickinson, C. Huynh and C. J. Chang, *J. Am. Chem. Soc.*, 2010, **132**, 5906-5915.
- 17. W. Sun, Z. Ma, J. Li, W. Li, L. Du and M. Li, *Sci. Chi. Chem.*, 2013, **56**, 1440-1445.
- W. Zhang, W. Liu, P. Li, F. Huang, H. Wang and B. Tang, *Anal. Chem.*, 2015, 87, 9825-9828.
- 19. J. Xu, Y.Zhang, H. Yu, X. Gao and S. Shao, *Anal Chem*, 2016, **88**, 1455-1461.
- 20. M. Ren, B. Deng, J. Y. Wang, X. Kong, Z. R. Liu, K. Zhou, L. He and W. Lin, *Bios. Bioel.*, 2016, **79**, 237-243.
- 21. R. Bortolozzi, S. von Gradowski, H. Ihmels, K. Schafer and G. Viola, *Chem. Com. (Camb)*, 2014, **50**, 8242-8245.