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Figure S1. 1H-NMR spectra of synthetic intermediates of M2 and M3.
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Figure S2. 19F-NMR spectra of synthetic intermediates of M3.
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Figure S3. 1H-NMR spectra of L1–L4 in DMSO-d6.

L1:1H-NMR (400 MHz, DMSO-d6): δ 7.58 (d, 1H), δ 7.46 (t, 1H), δ 7.18 (t, 1H), δ 7.09 (d, 2H), δ 

7.01 (d, 2H), δ 6.74 (d, 1H), δ 4.63 (s, 2H), δ3.77 (s, 3H), δ 3.12 (s, 9H).
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L2:1H-NMR (400 MHz, DMSO-d6): δ 7.52 (t, 1H), δ 7.50-7.35 (m, 3H), δ 7.27 (s, 1H), δ 7.18-7.14 

(m, 2H), δ 7.06 (d, 2H), δ 4.68 (s, 2H), δ 3.10 (s, 9H).
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L3:1H-NMR (400 MHz, DMSO-d6): δ 7.64 (d, 1H), δ 7.51 (t, 1H), δ 7.50 (d, 2H), δ 7.27 (t, 1H), δ 

7.16 (d, 2H), δ 6.90 (d, 1H), δ 4.61 (s, 2H), δ 3.11 (s, 9H).
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L4:1H-NMR (400 MHz, DMSO-d6): δ 8.03 (d, 2H), δ 7.87 (d, 1H), δ 7.57 (t, 1H), δ 7.35 (t, 1H), δ 

7.19 (d, 2H), δ 7.04 (d, 1H), δ 4.58 (s, 2H), δ3.10 (s, 3H), δ 2.57 (s, 3H).



Figure S4. 1H-NMR spectral change of M3 before and after 30-, 48-, and 168-h degradation in 

aqueous 8-M NaOH. The integration ratio between aromatic protons (6.8–7.8 ppm), benzyl protons 

(4.81 ppm), and trimethylammonium group (3.16 and 3.14 ppm) does not change significantly.
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Figure S5. 1H-NMR spectral change of (a) L1 (b) L2 (c) L3 and (d) L4 in 2-M CD3ONa/NaOD 

(CD3OD:D2O=4:1). The peak intensity of these NMR spectra was normalized by DSS peak at around 

0 ppm. Arrows indicate peaks derived from the decomposed product. The degradation rate was 

estimated by change of the relative peak intensity derived from aromatic protons of L1-L4 (6.5-8.2 

ppm) because other peak intensity derived from benzyl protons (-4.7 ppm) or trimethyl ammonium 

(3.2 ppm) protons is not reliable due to D/H exchange.
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