Electronic Supplementary Information (ESI)

Synthesis, structures, DNA/protein binding, molecular docking, anticancer activity and ROS generation of Ni(II), Cu(II) and Zn(II) 5,5-diethylbarbiturate complexes with bis(2-pyridylmethyl)amine and terpyridine

Veysel T. Yilmaz,*^a Ceyda Icsel,^a Feruza Suyunova,^a Muhittin Aygun,^b Buse Cevatemre^c and Engin Ulukaya^d

^aDepartment of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059 Bursa, Turkey. ^bDepartment of Physics, Faculty of Sciences, Dokuz Eylul University, 35210 Izmir, Turkey ^cDepartment of Biology, Faculty of Arts and Sciences, Uludag University, 16059 Bursa, Turkey. ^dDepartment of Medical Biochemistry, Medical School, Uludag University, 16059 Bursa, Turkey

Corresponding Author:

Prof. Dr. Veysel T. Yilmaz Department of Chemistry Faculty of Arts and Sciences Uludag University 16059 Bursa, Turkey

E-mail: vtyilmaz@uludag.edu.tr

EB exchange					
Complex	T(K)	K _{SV} (M ⁻¹)	ΔG°	ΔH°	ΔS°
		x 10 ⁻⁴	(kJ mol⁻¹)	(kJ mol⁻¹)	(JK ⁻¹ mol ⁻¹)
1	293	0.38	-28.8	-14.4	+49.3
	297	0.33	-29.0		
	300	0.29	-29.2		
2	293	2.46	-30.5	-6.5	+81.9
	297	2.39	-30.8		
	300	2.31	-31.1		
3	293	0.47	-29.3	-19.5	+33.6
	297	0.42	-29.5		
	300	0.39	-29.6		
4	293	1.95	-29.9	-6.0	+81.7
	297	1.90	-30.3		
	300	1.84	-30.5		
5	293	3.69	-30.6	-4.9	+87.7
	297	3.60	-30.9		
	300	3.52	-31.2		
6	293	1.68	-29.6	-7.7	+74.7
	297	1.62	-29.9		
	300	1.56	-30.1		

Table S1 Temperature-dependent fluorescence emission titration data for the interaction of **1–6** with FS-DNA.

Complex	Т(К)	K _{SV} (M ⁻¹)	<i>K</i> _F (M ⁻¹)	n	ΔG°	ΔH°	ΔS°
		x 10 ⁻⁴	x 10 ⁻⁵		(kJ mol ^{−1})	(kJ mol ⁻¹)	(JK ⁻¹ mol ⁻¹)
1	293	1.36	3.15	1.14	-33.8	-40.4	-22.5
	297	1.39	3.27	1.15	-33.7		
	300	1.44	3.48	1.17	-33.6		
2	293	2.41	5.09	1.17	-34.1	-41.3	-24.6
	297	2.48	5.27	1.19	-34.0		
	300	2.53	5.44	1.22	-33.9		
3	293	1.52	3.27	1.11	-35.7	-50.8	-51.5
	297	1.55	3.38	1.13	-35.5		
	300	1.61	3.69	1.16	-35.4		
4	293	1.96	3.66	1.12	-34.3	-29.6	+16.2
	297	1.84	3.51	1.10	-34.4		
	300	1.76	3.49	1.08	-34.5		
5	293	3.03	7.24	1.18	-36.2	-34.9	+1.5
	297	2.92	7.08	1.15	-36.3		
	300	2.84	6.94	1.13	-36.3		
6	_	_	_	-	-	-	_

Table S2 Temperature-dependent fluorescence emission titration data for the interaction of 1–6 withBSA.

Complex	Hydrogen bonding	Distance (Å)	Binding free energy
	(D–H) (H····A)	(H····A, Å)	(kJ mol⁻¹)
1	N9–H9 (barb)…O6 (DG2)	2.08	-28.87
	N9–H9 (barb)…O6 (DG22)	2.54	
	N1–H1 (bpma)…N7 (DG22)	2.84	
	N4 (DC3)…O4 (barb)	2.98	
2	N5–H5 (barb)…O3' (DG4)	2.35	-30.54
3	N5–H5 (barb)…O4 (DT7)	2.15	-30.54
	N7–H7 (barb)…O4 (DT19)	2.32	
	N6 (DA18)… O5 (barb)	2.83	
4	N1–H1 (barb)…O6 (DG2)	2.23	-30.12
	N1-H1(barb)… O6 (DG22)	2.87	
5	N5–H5 (barb)…O4' (DG4)	2.40	-30.12
	N5–H5 (barb)…O2 (DC3)	2.72	
6	N5–H5(barb)…O3' (DA5)	2.83	-29.71
	N7–H7(barb)…O4' (DC23)	2.86	
	N7–H7(barb)…N3 (DG22)	2.92	
	N5-H5(barb)…OP1 (DA6)	2.94	

Table S3 Hydrogen bonding and van der Waals interactions and the binding free energy of the moststable docking conformations for complexes 1–6 docked into DNA.

Complex	Hydrogen bonding	Distance	Hydrophobic interaction	Distance	Binding free
		(Å)		(Å)	energy (kJ mol⁻¹)
1	H ₂ O-H2B… O:ALA291	2.40	LYS199-alkyl…alkyl	4.04	-34.31
	ARG257-NH1… O4-barb	2.86			
2	N5-H5 (barb)… OG:SER192	2.53	ALA215- alkyl … alkyl	3.91	-34.73
3	-	-	Alkyl …ARG218- alkyl	3.83	-35.98
			Alkyl …LEU219- alkyl	3.95	
			ALA215- alkyl … alkyl	3.99	
4	-	-	ALA291- alkyl … alkyl	4.08	-33.47
			π ···LYS199- alkyl	4.08	
			Alkyl …LEU238- alkyl	4.16	
			HIS242- π ···alkyl	4.63	
			HIS288-π …alkyl	4.73	
			$\pi \cdots$ LYS195- alkyl	4.75	
			ARG222:NH2 $\cdots \pi$	4.96	
			(electrost.)		
5	TYR161:OH… O1-H₂O	2.75	ILE142:CH $\cdots \pi$	3.75	-36.40
	TYR161:OH… O4-barb	2.89	TYR161- $\pi \cdots \pi$	3.80	
			Alkyl …ARG145- alkyl	3.94	
			Alkyl… ILE142- alkyl	4.26	
			HIS146- π ···alkyl	4.53	
			TYR138- $\pi \cdots \pi$	4.74	
			$\pi \cdots$ ARG117- alkyl	4.85	
			ARG117:NH ₂ ··· π	4.37	
			(electrost)		
6	-	-	ALA215- alkyl … alkyl	4.04	-31.79
			Alkyl …ARG218- alkyl	4.16	
			π …LYS195- alkyl	4.24	
			Alkyl …LEU238- alkyl	4.43	
			HIS288- π ···alkyl	4.56	
			π …LYS199- alkyl	4.49	
			LYS195:NZ $\cdots \pi$	4.74	
			(electrost.)		

Table S4 Hydrogen bonding, binding sites and the binding free energy of the most stable dockingconformations for complexes 1–6 docked into HSA.

Fig. S1 ESI-MS spectra of 1–6.

Fig. S2 The emission spectrum of **6** in MeOH (1×10^{-4} M) at r.t. ($\lambda_{ex} = 340$ nm). The complex exhibits strong fluorescence and the slits was kept at 2.5.

Fig. S3 UV spectra of solutions containing **1–6** (10 μ M) upon addition of FS-DNA (0–10 μ M) in Tris-HCl. The arrows show the absorbance changes upon increasing FS-DNA concentration. The inset shows the linear fit of [DNA]/($\varepsilon_a - \varepsilon_f$) vs. [DNA].

Fig. S4 Emission spectra of EB-bound and Hoechst 33258-bound DNA solutions in the absence and presence of increasing concentrations of **1–6** in Tris-HCI. [EB] = 5.0 μ M, [DNA] 50.0 μ M. *r* = [complex]/[DNA]. The arrows show the changes in intensity upon increasing amounts of the complexes. Insets: Stern-Volmer plot of the fluorescence data.

Fig. S5 Emission spectra of Hoechst 33258-bound DNA solutions in the absence and presence of increasing concentrations of **2**, **5**, **6** in Tris-HCl buffer. [Hoechst 33258] = 5.0μ M, [DNA] 50.0μ M. The arrows show the changes in intensity upon increasing amounts of the complexes. Insets: Stern-Volmer plot of the fluorescence data.

Figure S6 Thermal denaturation profiles of FS-DNA (100 μ M) in the absence and in the presence of **1–6** (50 μ M) in a Tris-HCl.

Fig. S7 UV-vis absorption spectra of BSA (10 μ M) in Tris-HCl in the presence of 1–6 (5 μ M).

Fig. S8 Emission spectra of BSA (1.0 μ M; λ ex = 280 nm) in presence of **1–5** (0-10.0 μ M) and **6** (0-1.0 μ M). The arrow shows the emission intensity changes upon increasing complex concentration. Insets: Stern-Volmer plot of the fluorescence data.

Fig. S9 (a) Continued

Fig. S9 Synchronous spectra of BSA (1.0 μ M) in presence of **1–5** (0-10.0 μ M) and **6** (0-1.0 μ M). at $\Delta\lambda = 15$ nm (**a**) and $\Delta\lambda = 60$ nm (**b**). Arrows show the emission intensity changes upon increasing concentration of **1–6**.

Fig. S10 Molecular docking of 1–4 with DNA.

Fig. S11 Continued

Fig. S11 Molecular docking of 1–6 with HSA.

Fig. S12 The dose-response graphics for **1–6** obtained from SRB assay, showing the effect of the complexes on the growth of the cell lines after 48 h of treatment.

Fig. S13 Phase contrast microscopy images of the cancer cells treated with 2, 5 and 6 (50 μ M) for 48 h.

Fig. S14 The Growth rate of A549, DU145, HT29, MCF-7 cells treated with six different doses (3.12–100 μ M) of **2**, **5** and cisplatin for 48 h. Growth rate curves were obtained by the ATP assay.

Fig. S15 Flow cytometry analysis of apoptosis of MCF-7 cells treated with LC₉₀ concentrations of **2** (**a**) and **5** (**b**) using Annexin V and caspase-3/7 assays.