Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information - New Journal of Chemistry

Synthesis, structure and thermolysis of oxazagermines and oxazasilines

Felix Dannenberg,^a Günther Thiele,^{b,c} Eike Dornsiepen,^b Stefanie Dehnen,^b Michael

Mehring^{a,}*

- ^a Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Professur Koordinationschemie, 09107 Chemnitz, Germany
- ^b Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
- ^c present address: University of California, Department of Chemistry, Berkeley, California 94720, United States

<u>Molecular structures of compounds 1, 2, 3, 5, 6 and 8 (R_a enantiomer) and crystal data</u> <u>collection and refinement information</u>

Figure S 1 Molecular structure of **1** in the solid state (50% probability level of displacement ellipsoids, hydrogen atoms are omitted for clarity). Selected bond lengths [Å] and bond angles [°]: Si1-O1 1.6396(9), Si1-N1 1.7033(10), O1-Si1-O1i 110.04(7), O1-Si1-N1 104.31(4), O1-Si1-N1i 111.01(4), N1-Si1-N1i 116.21(7). Symmetry transformations used to generate equivalent atoms: i denotes -x, y, 1.5-z.

Figure S 2 Molecular structure of **2** in the solid state (50% probability level of displacement ellipsoids, hydrogen atoms are omitted for clarity). Selected bond lengths [Å] and bond angles [°]: Si1-O1 1.6434(13), Si1-N1 1.7055(15), O1-Si1-O1i 109.59(9), O1-Si1-N1 104.32(7), O1-Si1-N1i 110.90(7), N1-Si1-N1i 116.82(10). Symmetry transformations used to generate equivalent atoms: i denotes 1-x, 1-y, z.

Figure S 3 Molecular structure of **3** in the solid state (50% probability level of displacement ellipsoids, hydrogen atoms are omitted for clarity). Selected bond lengths [Å] and bond angles [°]: Si1-O1 1.641(2), Si1-N1 1.705(2), C4-Br1 1.902(3), O1-Si1-O1i 109.00(17), O1-Si1-N1 103.88(11), O1-Si1-N1i 111.12(10), N1-Si1-N1i 117.77(19). Symmetry transformations used to generate equivalent atoms: i denotes 1-x, 1-y, z.

Figure S 4 Molecular structure of **5** in the solid state (50% probability level of displacement ellipsoids, hydrogen atoms are omitted for clarity). Selected bond lengths [Å] and bond angles [°]: Ge1-O1 1.7743(12), Ge1-N1 1.8035(15), O1-Ge1-O1i 109.55(9), O1-Ge1-N1 102.74(6), O1-Ge1-N1i 110.30(6), N1-Ge1-N1i 121.06(10). Symmetry transformations used to generate equivalent atoms: i denotes 2-x, -y, z.

Figure S 5 Molecular structure of **6** in the solid state (50% probability level of displacement ellipsoids, hydrogen atoms are omitted for clarity). Selected bond lengths [Å] and bond angles [°]: Ge1-O1 1.7752(17), Ge1-N1 1.801(2), O1-Ge1-O1i 108.36(12), O1-Ge1-N1 102.21(8), O1-Ge1-N1i 111.02(8), N1-Ge1-N1i 121.68(14). Symmetry transformations used to generate equivalent atoms: i denotes 2-x, 2-y, z.

Figure S 6 Molecular Structure of **8** (*R*_a enantiomer) in the solid state (50% probability level of displacement ellipsoids, hydrogen atoms are omitted for clarity). Selected bond lengths [Å] and bond angles [°]: Ge1-O1 1.760(2), Ge1-N1 1.809(2), O1-Ge1-O1i 105.09(13), O1-Ge1-N1 102.51(9), O1-Ge1-N1i 117.48(9), N1-Ge1-N1i 112.23(15). Symmetry transformations used to generate equivalent atoms: i denotes 1-x, y, -z.

parameters	1	2	3	4	5	6	7	8 (S _a)	8 (<i>R</i> _a)	9
emperical formula	C ₂₆ H ₂₂ N ₂ O ₂ Si	C ₂₈ H ₂₆ N ₂ O ₂ Si	C ₂₆ H ₂₀ Br ₂ N ₂ O ₂ Si	C ₂₆ H ₂₂ N ₂ O ₂ Ge	C ₂₈ H ₂₆ N ₂ O ₂ Ge	C ₂₆ H ₂₀ Br ₂ N ₂ O ₂ Ge	C ₂₀ H ₂₆ N ₂ O ₂ Ge	C ₁₈ H ₂₂ N ₂ O ₂ Ge	C ₁₈ H ₂₂ N ₂ O ₂ Ge	C ₁₃ H ₁₁ NOGe
formula weight	422.54	450.60	580.35	467.05	495.10	624.85	399.02	370.96	370.97	539.63
temperature / K	100	100	100	100	100	100	100	100	100	100
wavelength / Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	monoclinic	monoclinic	monoclinic	triclinic
space group	Pbcn	Fdd2	Fdd2	Pbcn	Fdd2	Fdd2	P21/c	C121	C2	<i>P</i> -1
unit cell dimensions	<i>a</i> = 14.8114(6)	a = 15.2934(11)	a = 14.9435(6)	a = 14.8477(10)	a = 15.2579(8)	a = 14.9416(7)	a = 9.0089(2)	a = 12.1559(11)	a = 12.1426(11)	a = 6.8500(3)
	b = 8.5394(4)	b = 32.451(3)	<i>b</i> = 32.8797(14)	b = 8.5189(4)	b = 32.8165(17)	b = 33.2294(19)	b = 10.1226(2)	b = 7.3998(6)	b = 7.4037(5)	b = 6.8808(3)
	<i>c</i> = 16.8172(9)	c = 9.2736(6)	c = 9.4404(3)	<i>c</i> = 17.0779(8)	c = 9.2818(5)	c = 9.4680(7)	c = 20.3118(7)	c = 9.3532(7)	c = 9.3422(8)	c = 23.2208(9)
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha=90.720(3)^\circ$
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta=92.923(2)^\circ$	$\beta=103.252(6)^\circ$	$\beta=103.205(7)^\circ$	$\beta=90.263(3)^\circ$
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma=104.661(3)^\circ$
volume, Z	2127.05(17) Å ³ , 4	4602.4(6) Å ³ , 8	4638.4(3) Å ³ , 8	2160.1(2) Å ³ , 4	4647.5(4) Å ³ , 8	4700.9(5) Å ³ , 8	1849.89(8) Å ³ , 4	818.93(12) Å ³ , 2	817.66(12) Å ³ , 2	1058.72(8) Å ³ , 2
density (calc.)	1.319 g⋅cm ⁻³	1.301 g·cm ⁻³	1.662 g·cm ⁻³	1.436 g·cm ⁻³	1.415 g·cm ⁻³	1.766 g·cm ⁻³	1.433 g·cm ⁻³	1.504 g·cm ⁻³	1.507 g·cm ⁻³	1.693 g·cm ⁻³
absorption coefficient	0.137 mm ⁻¹	0.131 mm ⁻¹	3.575 mm ⁻¹	1.444 mm ⁻¹	1.347 mm ⁻¹	4.730 mm ⁻¹	1.672 mm ⁻¹	1.882 mm ⁻¹	1.885 mm ⁻¹	2.867 mm ⁻¹
F (000)	888	1904	2320	960	2048	2464	832	384	384	544
crystal size / mm ³	0.15 x 0.13 x 0.10	0.15 x 0.13 x 0.12	0.15 x 0.13 x 0.11	0.17 x 0.15 x 0.11	0.44 x 0.41 x 0.30	1.00 x 0.78 x 0.41	0.21 x 0.19 x 0.08	0.51 x 0.33 x 0.19	0.30 x 0.20 x 0.10	0.21 x 0.17 x 0.12
θ range	2.422 to 26.716°	2.511 to 26.688°	2.478 to 26.693°	2.39 to 26.73°	2.48 to 30.62°	2.45 to 30.24°	2.008 to 29.193°	3.247 to 26.711°	2.24 to 26.74°	2.632 to 29.162°
limiting indices	-18 ≤ h ≤ 16	-19 ≤ h ≤ 19	-18 ≤ h ≤ 18	-18 ≤ h ≤ 18	-18 ≤ h ≤ 21	-21 ≤ h ≤ 15	-12 ≤ h ≤ 12	-15 ≤ h ≤ 15	-15 ≤ h ≤ 15	-9 ≤ h ≤ 9
	-10 ≤ k ≤ 10	$-40 \le k \le 40$	-41 ≤ k ≤ 41	-10 ≤ k ≤ 10	-34 ≤ k ≤ 45	-46 ≤ k ≤ 45	-13 ≤ k ≤ 13	-9≤ k≤9	-9 ≤ k ≤ 8	-9≤ k≤9
	-21 ≤ I ≤ 21	-11 ≤ I ≤ 11	-11 ≤ I ≤ 11	-21 ≤ I ≤ 21	-13 ≤ I ≤ 12	-13 ≤ I ≤ 11	-27 ≤ ≤ 27	-11 ≤ I ≤ 11	-11 ≤ I ≤ 11	-31 ≤ I ≤ 31
reflections collected	20817	12368	26568	23252	10682	11322	52127	4713	5407	47679
independent reflections	2253	2440	2450	2296	3209	3223	4955	1717	1684	5680
R _{int}	0.0792	0.0475	0.0567	0.0981	0.0312	0.0355	0.0473	0.1085	0.0840	0.0370
completeness to 0	0.997	1.00	1.00	1.00	0.89	0.91	0.989	1.00	0.98	0.992
Absorption correction T_{min} / T_{max}	0.9420 / 0.9850	0.850 / 0.988	0.437 / 0.732	0.7601 / 0.8504	0.6275 / 0.7461	0.4574 / 0.7460	0.4943 / 0.7688	0.403 / 0.747	0.6085 / 0.7970	0.4331 / 0.7745
data/restraints/parameters	2022/0/185	2268/1/151	2435/1/150	1557/0/185	3040/1/151	3007/1/150	4774/0/230	1700/1/106	1678/1/106	5257/0/289
S	1.061	0.977	1.076	0.902	1.104	1.056	1.094	1.065	1.095	1.081
final R indices $[I > 2\sigma (I)]$	$R_1 = 0.0367,$	$R_1 = 0.0256,$	$R_1 = 0.0224,$	$R_1 = 0.0271$,	$R_1 = 0.0272,$	$R_1 = 0.0277,$	$R_1 = 0.0268,$	$R_1 = 0.0398,$	$R_1 = 0.0277,$	$R_1 = 0.0251,$
	$wR_2 = 0.0887$	$wR_2 = 0.0602$	$wR_2 = 0.0559$	$wR_2 = 0.0530$	$wR_2 = 0.0582$	$wR_2 = 0.0532$	$wR_2 = 0.0684$	$wR_2 = 0.0958$	$wR_2 = 0.0707$	$wR_2 = 0.0601$
R indices (all data)	R ₁ = 0.0424,	R ₁ = 0.0287,	R ₁ = 0.0229,	$R_1 = 0.0642,$	R ₁ = 0.0306,	$R_1 = 0.0321,$	R ₁ = 0.0287,	$R_1 = 0.0405,$	$R_1 = 0.0277$	$R_1 = 0.0301,$
	$wR_2 = 0.0927$	$wR_2 = 0.0608$	$wR_2 = 0.0563$	$wR_2 = 0.0609$	$wR_2 = 0.0596$	$wR_2 = 0.0545$	$wR_2 = 0.0697$	$wR_2 = 0.0962$	$wR_2 = 0.0707$	$wR_2 = 0.0618$
max./min. residual electron density	0.267 / -0.399 e Å ³	0.199 / -0.168 e Å ³	0.208 / -0.572 e Å ³	0.328 / -0.245 e Å ³	0.269 / -0.695 e Å ³	0.317 / -0.508 e Å ³	0.384 / -0.471 e Å ³	0.427 / -1.118 e Å ³	0.594 / -0.263 e Å ³	0.432 / -0.501 e Å ³
absolute structure parameter ^[1]		-0.02(5)	-0.015(5)		0.034(8)	0.023(8)		-0.024(16)	-0.002(12)	

Table S 1 Compilation of crystal data collection and refinement information

Figure S 7 ATR-FTIR spectra of compounds a) 1, b) 2, c) 3, d) 4, e) 5, f) 6 g) 7 h) 8 i) 9.

NMR Spectra of compound 9

Figure S 8 NMR spectra of compound **9** 24 h after dissolution in CDCl₃. a) NMR spectrum recorded at ambient temperature and b) NMR spectrum recorded at -50°C.

TGA-analysis

Figure S 9 Thermogravimetric analysis of silicon compounds 1 (black line), 2 (red line), 3 (blue line); heating rate 10 K \cdot min⁻¹, N₂ atmosphere, N₂ volume flow of 20 ml \cdot min⁻¹.

Figure S 10 Thermogravimetric analysis of germanium compounds 4 (black line), 5 (red line), 6 (blue line) are depicted in the left picture and compound 7 (grey line), 8 (orange line) and 9 (violet line) in the right picture; heating rate $10 \text{ K} \cdot \text{min}^{-1}$, N₂ atmosphere, N₂ volume flow of 20 ml \cdot min⁻¹. Please note, that the masses of the compounds 4, 8 and 9 increase slightly at the beginning, which might be attributed to the presence of oxygen or moisture within the nitrogen gas.

PXRD pattern of carbonized germanium compounds 4 – 9 for different peak temperatures

precursor

precursor

'n

precursor

precursor

Figure S 11 Temperature-dependent formation of crystalline germanium after carbonization of a) compound **5** b) compound **6** c) compound **7** d) compound **8** e) compound **9** in the temperature range 600°C - 900°C or 800°C - 900°C with bars for standard diffraction pattern of cubic germanium (ICDD no. 00-004-0545, black bars) and hexagonal germanium dioxide (ICDD no. 00-036-1463, blue bars).

Elemental composition of selected Ge@C materials

Material C4

 Table S 2 CHN-analysis of material C4 and the resulting carbon, hydrogen and nitrogen contents

		C / %	H / %	N / %	
Temperature	resique	CHN-analysis	CHN-analysis	CHN-analysis	
600 °C	39 %	56.28	1.75	2.43	
700 °C	38 %	58.29	0.92	2.61	
800 °C	37 %	56.28	0.81	1.94	
900 °C	38 %	59.85	0.25	1.79	

Material C9

Table S 3 CHN-analysis of material C9 and the resulting carbon, hydrogen and nitrogen contents

Tomporatura	raaidua	C / %	H / %	N / %	
remperature	residue	CHN-analysis	CHN-analysis	CHN-analysis	
600 °C	49 %	45.38	1.34	1.55	
700 °C	39 %	47.56	0.43	1.80	
800 °C	44 %	45.12	0.31	1.40	
900 °C	40 %	46.75	0.03	1.05	

Selected SEM Pictures for materials C4, C8 and C9

Material C4

Figure S 12 SEM pictures with 10 µm scale bar for materials a) C4_600, b) C4_800 and c)

C4_900.

Material C9

800°C

900°C

d)

900°C

N2-sorption measurements

Figure S 14 Pore size distribution of a) C4_900 and b) C9_900. The pore size distributions were determined according to the QSDFT model for slit and cylindrical pores using the adsorption branch for carbon materials.

References – Supporting Information

[1] H. D. Flack, Acta Crystallogr., Sect. A **1983**, 39, 876.