Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

New Journal of Chemistry

A new fluorescent sensor containing glutamic acid for Fe³⁺ and its resulting complex as

a secondary sensor for PPi in purely aqueous solution

Ping Li* and Ying Wang*

School of chemistry and chemical engineering, University of Jinan, Jinan 250022, China.

*Corresponding author:

Ping Li

Ying Wang

School of chemistry and chemical engineering, University of Jinan, Jinan 250022, China.

E-mail address: chm_lip@ujn.edu.cn (P. Li),

15165089871@163.com (Y. Wang)

Fig. S1. The optimization of L, L^- and $L^{2-}H_2O$ using TD-DFT calculating methods.

Fig. S2. The linear change ratio between fluorescence intensity (at 524 nm) and different concentration of Fe^{3+} in purely aqueous buffer (tris 10 mM, pH = 7.4) solution.

Fig. S3. Benesi–Hildebrand plot based on a 1:1 binding stoichiometry between L and Fe³⁺.

Fig. S4. Absorption spectrum of L (1 \times 10⁻⁵ M) towards 5 equiv. of various metal ions including Na⁺, Li⁺, K⁺, Mg²⁺, Ca²⁺, Zn²⁺, Cd²⁺, Fe²⁺, Ag⁺, Cu²⁺, Co²⁺, Ni²⁺, Mn²⁺, Cr³⁺, Sr³⁺, Al⁺ and Fe³⁺, only Fe³⁺ in purely aqueous buffer (tris 10 mM, pH = 7.4) solution. Insert: Absorption spectrum of free L and L-Fe³⁺complex in the presence of 5 equiv. of Fe³⁺.

Fig. S5. The linear change ratio between fluorescence intensity of L-Fe³⁺ complex (at 524 nm) and different concentration of PPi in purely aqueous buffer (tris 10 mM, pH = 7.4) solution.

Fig. S6. Fluorescence selectivity of L-Fe³⁺ complex towards various anions including PPi, EDTA, PO₄³⁻, H₂PO₄⁻, S₂O₃²⁻, HSO₃⁻, CrO₄²⁻, NO₂⁻, NO₃⁻, S²⁻, F⁻, Cl⁻, Br⁻ in purely aqueous buffer (tris 10 mM, pH = 7.4) solution.

Fig. S7. (a) whole ¹H NMR spectrum and (b) partial ¹H NMR spectrum in detail of probe L in DMSO-*d*₆.

Fig. S8. ¹H NMR spectrum of compound 3 in CDCl₃.

Fig. S9. ¹³C NMR spectrum of probe L in DMSO-*d*₆.

Fig. S10. ¹³C NMR spectrum of compound 3 in CDCl₃.

Fig. S11. ESI-MS of complex L.

Fig. S12. ESI-MS of complex 3.

Fig. S13. The FTIR spectra of L.

Fig. S14. The FTIR spectra of compound 3.

Fig. S15. Reversible switching of the emission of **L** by sequential addition of Fe^{3+} and PPi. (1: the fluorescence intensity of **L** in the presence of 3 equiv. of Fe^{3+} ; 2: the fluorescence intensity of 1 in the presence of 40 equiv. of PPi; 3: the fluorescence intensity of 2 in the presence of 10 equiv. of Fe^{3+} .)