Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Dimers of Glycoluril Based Molecular Clips

Jan Sokolov⁺, Tomas Lizal⁺, and Vladimir Sindelar⁺,*

⁺Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.

Table of contents

NMR spectra	S2
NMR titration experiments	S11
Determination of activation Gibbs energies of the conformer interconversions	\$15
Computational details	S18

NMR spectra

Figure S1. ¹H NMR spectrum (300 MHz, 96% D_2SO_4 , DMSO– d_6 as external reference) of 4a

Figure S2. ¹³C NMR spectrum (125 MHz, 96% D_2SO_4 , DMSO– d_6 as external reference) of 4a

Figure S4. ¹³C NMR spectrum (125 MHz, DMSO- d_6) of **5a**

Figure S5. ¹H NMR spectrum (500 MHz, DMSO- d_6) of **6**

Figure S6. ¹³C NMR spectrum (125 MHz, DMSO- d_6) of **6**

Figure S7. ¹H NMR spectrum (300 MHz, D₂O) of 7a

Figure S8. ¹³C NMR spectrum (125 MHz, D₂O, 1,4-dioxane as internal reference) of 7a

Figure S10. ¹³C NMR (125 MHz, 95% DCOOD) spectrum of 4b

Figure S11. ¹H NMR spectrum (500 MHz, DMSO- d_6) of **5b**. Symbols * and [#] mark signals of different conformers.

Figure s12. ¹³C NMR spectrum (125 MHz, DMSO- d_6) of **5b**. Symbols * and [#] mark signals of different conformers.

Figure S14. ¹³C NMR spectrum (125 MHz, D₂O, 1,4-dioxane as internal reference) of **7b**. Symbols * and [#] mark signals of different conformers.

Figure S15. ¹H NMR spectrum (500 MHz, 95% DCOOD) of 9

Figure S16. ¹³C NMR (125 MHz, 95% DCOOD) spectrum of 9

Figure S17. ¹H NMR spectrum (500 MHz, D_2O) of **12**

Figure S18. ¹³C NMR spectrum (125 MHz, D₂O, 1,4-dioxane as internal reference) of 12

NMR titration experiments

Figure S19. Job's plot of complexation of 11 by clip 7a

Figure S20. Job's plot of complexation of 11 by clip 7b

Figure S21. ¹H NMR (300 MHz, D₂O) spectra **11** in the absence (A) and in the presence of 0.13 equiv. (B), 0.25 equiv. (C), 0.38 equiv. (D), 0.50 equiv. (E), 0.63 equiv. (F), 0.75 equiv. (G), 1.00 equiv. (H), 1.50 equiv. (I), 2.00 equiv. (J), and 3.00 equiv. (K) of **7a**. *Signals of **7a**.

Figure S22. Plot of chemical shift of 11 (signal 1) vs. analytical concentration of 7a

Figure S23. Plot of chemical shift of 11 (signal 1) vs. analytical concentration of 7b

Figure S24. ¹H NMR (300 MHz, D₂O) spectra **11** in the absence (A) and in the presence of 0.25 equiv. (B), 0.5 equiv. (C), 0.75 equiv. (D), 0.86 equiv. (E), 1.00 equiv. (F), 1.16 equiv. (G), 1.25 equiv. (H), 1.50 equiv. (I), 2.00 equiv. (J), and 3.00 equiv. (K) of **7a**. *Signals of **12**.

Figure S25. Plot of chemical shift of 11 (signal 1) vs. analytical concentration of 12

Determination of activation Gibbs energies of the conformer interconversions

¹H NMR spectra (500 MHz, DMSO–*d6*) of compounds **5b** and **7b** were recorded at temperatures varying from 30 °C to 140 °C (*Figures S26 and S27*).

Figure S26. Temperature dependent ¹H NMR spectrum of compound **5b** (500 MHz, DMSO–*d6*). 30 °C (A), 35 °C (B), 40 °C (C), 45 °C (D), 50 °C (E), 55 °C (F), 60 °C (G), 65 °C (H), 70 °C (I), 75 °C (J), 80 °C (K), 85 °C (L), 90 °C (M), 95 °C (N), 100 °C (O), 110 °C, (P) 120 °C (Q), 130 °C (R).

Figure S26. Temperature dependent ¹H NMR spectrum of compound **7b** (500 MHz, DMSO–*d6*). 30 °C (A), 40 °C (B), 50 °C (C), 60 °C (D), 70 °C (E), 80 °C (F), 85 °C (G), 90 °C (H), 95 °C (I), 100 °C (J), 105 °C (K), 110 °C (L), 115 °C (M), 120 °C (N), 130 °C (O), 140 °C, (P).

The rate constants of the interconversion at the coalescence temperature were calculated using equation (1),¹

$$\frac{k_1}{p_{major}} = \frac{k_{-1}}{p_{minor}} = \frac{\pi \Delta v_0}{X} \tag{1}$$

where k_1 is the rate constant of the major to minor conformer interconversion, p_{major} is the population of the major conformer, k_{-1} is the rate constant of the minor to major conformer interconversion, p_{minor} is the population of the minor conformer, Δv_0 is the frequency difference between selected signals of conformers in the slow exchange regime at the NMR timescale, X is given by equation (2),¹

$$X^{6} - 6X^{4} + [12 - 27(\Delta p)^{2}]X^{2} - 8 = 0$$
⁽²⁾

where Δp is the population difference $p_{major} - p_{minor}$. The activation Gibbs energies of the interconversion ΔG^{\dagger} was then calculated using Eyring equation (3),

$$k = \frac{k_B T_c}{h} e^{\frac{\lambda G^{\ddagger}}{R T_c}}$$
(3)

where k_B is Boltzmann constant, h is Planck constant, R is gas constant and T_c is the coalescence temperature. Results are summarized in *Table S1*. **Table S1.** Conformer populations, coalescence temperatures, frequency differences, rate constants anddetermined values of activation Gibbs energy of the interconversion of conformers.

Compound:		5	b	7b		
1	Imajor	0.	58	0.5	0.58	
1	O _{minor}	0.	42	0.42		
	X	1.	82	1.82		
9	Signal:	1	4	1	4	
$T_{\mathcal{C}}(K)$		333	363	388	388	
$\Delta v_0 (Hz)$		7.83	40.78	14.37	11.83	
$k_1(s^{-1})$		5.68	29.56	10.42	8.58	
$k_{-1}(s^{-1})$		7.84	40.83	14.39	11.84	
$\Delta {m G}^{\ddagger}$	$\Delta G^{\ddagger} \qquad \qquad Major \rightarrow minor$		18.95	21.05	21.14	
(kcal mol ^{⁻1}) Minor → major		18.20	18.71	20.81	20.89	

Computational details

Geometry optimizations of glycoluril-based clips were performed using Spartan '14 software.² All structures were built *in silico*. Structures of syn and anti conformers of compound **5b** were first pre-optimized at the PM6 semi-empirical level of theory³ and further optimized at the RB3LYP/6-311G* level of theory^{4–6}. Structure of the **7a**·11₂ complex was optimized at the PM6 semi-empirical level of theory.

Table S2. Geometry of syn conformer of clip **5b** optimized at the RB3LYP/6-311G* level of theory. The predicted absolute energy value for this structure was found to be of -5173610.98 kJ/mol.

S	x [Å]	y[Å]	z[Å]	S	x [Å]	y[Å]	z[Å]
С	5.642172	1.187808	1.94451	Н	5.615629	2.002058	2.668102
Ν	4.447316	1.196673	1.084077	Н	1.46	2.141138	-0.378871
С	4.539949	1.733585	-0.188231	Н	1.46	-2.141138	-0.378871
С	3.598842	0	1.116462	Н	-1.2346	2.141138	-0.378871
Ν	3.491919	1.205239	-0.95364	Н	-1.2346	-2.141138	-0.378871
С	2.933377	0	-0.330592	Н	5.615629	-2.002058	2.668102
Ν	4.447316	-1.196673	1.084077	Н	6.531672	-1.29225	1.311383
С	4.539949	-1.733585	-0.188231	Н	-6.531672	-1.29225	1.311383
Ν	3.491919	-1.205239	-0.95364	Н	-5.615629	-2.002058	2.668102
0	5.36156	2.539016	-0.562387	Н	-5.615629	2.002058	2.668102
0	5.36156	-2.539016	-0.562387	Н	-6.531672	1.29225	1.311383
С	1.408881	0	-0.363101	Н	2.014083	0.888152	2.293743
С	0.695806	1.201133	-0.363998	Н	2.014083	-0.888152	2.293743
С	0.695806	-1.201133	-0.363998	Н	3.227735	0	3.227601
С	-0.695806	1.201133	-0.363998	Н	-2.014083	-0.888152	2.293743
С	-0.695806	-1.201133	-0.363998	Н	-2.014083	0.888152	2.293743
С	-1.408881	0	-0.363101	Н	-3.227735	0	3.227601
Ν	-3.491919	-1.205239	-0.95364	Н	2.626671	1.24	-2.84994
С	-4.539949	-1.733585	-0.188231	Н	4.225589	2.022693	-2.703908
С	-2.933377	0	-0.330592	Н	4.225589	-2.022693	-2.703908
Ν	-4.447316	-1.196673	1.084077	Н	2.626671	-1.2224	-2.84994
С	-3.598842	0	1.116462	Н	-4.225589	-2.022693	-2.703908
Ν	-3.491919	1.205239	-0.95364	Н	-2.626671	1.24	-2.84994
С	-4.539949	1.733585	-0.188231	Н	-4.225589	2.022693	-2.703908
Ν	-4.447316	1.196673	1.084077	0	4.296975	0	-2.836141
0	-5.36156	-2.539016	-0.562387	0	-4.296975	0	-2.836141
0	-5.36156	2.539016	-0.562387	Н	-2.626671	-1.2224	-2.84994
С	5.642172	-1.187808	1.94451				
С	-5.642172	-1.187808	1.94451				
С	-5.642172	1.187808	1.94451				
С	2.647168	0	2.305384				
С	-2.647168	0	2.305384				
С	3.624958	1.170166	-2.397959				
С	3.624958	-1.170166	-2.397959				
С	-3.624958	-1.170166	-2.397959				
С	-3.624958	1.170166	-2.397959				
0	-5.668894	0	2.706476				
0	5.668894	0	2.706476				

Н

6.531672

1.29225

1.311383

Table S3. Geometry of anti conformer of clip **5b** optimized at the RB3LYP/6-311G* level of theory. The predicted absolute energy value for this structure was found to be of –5173655.61 kJ/mol.

s	x [Å]	y[Å]	z[Å]	S	x [Å]	y[Å]	z[Å]
С	5.845576	-1.612931	1.172337	Н	5.668027	-2.693778	1.231599
Ν	4.572864	-0.915929	1.204216	Н	1.223925	0.165827	-2.141597
С	4.517259	0.367666	1.748321	Н	1.223925	0.165827	2.141597
С	3.740580	-1.032352	0.000000	Н	-1.223925	-0.165827	-2.141597
Ν	3.400260	1.007839	1.202618	Н	-1.223925	-0.165827	2.141597
С	2.915965	0.324647	0.000000	Н	5.668027	-2.693778	-1.231599
Ν	4.572864	-0.915929	-1.204216	Н	6.435475	-1.281050	-2.022541
С	4.517259	0.367666	-1.748321	Н	-6.435475	1.281050	2.022541
Ν	3.400260	1.007839	-1.202618	Н	-5.668027	2.693778	1.231599
0	5.260168	0.824657	2.582300	Н	-5.668027	2.693778	-1.231599
0	5.260168	0.824657	-2.582300	Н	-6.435475	1.281050	-2.022541
С	1.396949	0.181959	0.000000	Н	2.298573	-2.379270	0.888258
С	0.690191	0.089593	-1.201381	Н	2.298573	-2.379270	-0.888258
С	0.690191	0.089593	1.201381	Н	3.591157	-3.187816	0.000000
С	-0.690191	-0.089593	-1.201381	Н	-2.298573	2.379270	0.888258
С	-0.690191	-0.089593	1.201381	Н	-2.298573	2.379270	-0.888258
С	-1.396949	-0.181959	0.000000	Н	-3.591157	3.187816	0.000000
Ν	-3.400260	-1.007839	1.202618	Н	2.304919	2.780182	1.226640
С	-4.517259	-0.367666	1.748321	Н	3.912886	2.834480	2.022674
С	-2.915965	-0.324647	0.000000	Н	3.912886	2.834480	-2.022674
Ν	-4.572864	0.915929	1.204216	Н	2.304919	2.780182	-1.226640
С	-3.740580	1.032352	0.000000	Н	-3.912886	-2.834480	2.022674
Ν	-3.400260	-1.007839	-1.202618	Н	-2.304919	-2.780182	-1.226640
С	-4.517259	-0.367666	-1.748321	Н	-3.912886	-2.834480	-2.022674
Ν	-4.572864	0.915929	-1.204216	0	3.959589	2.978251	0.000000
0	-5.260168	-0.824657	2.582300	0	-3.959589	-2.978251	0.000000
0	-5.260168	-0.824657	-2.582300	Н	-2.304919	-2.780182	1.226640
С	5.845576	-1.612931	-1.172337				
С	-5.845576	1.612931	1.172337				
С	-5.845576	1.612931	-1.172337				
С	2.927824	-2.320685	0.000000				
С	-2.927824	2.320685	0.000000				
С	3.351964	2.458000	1.171436				
С	3.351964	2.458000	-1.171436				
С	-3.351964	-2.458000	1.171436				
С	-3.351964	-2.458000	-1.171436				
0	-6.582479	1.305480	0.000000				
0	6.582479	-1.305480	0.000000				
н	6.435475	-1.281050	2.022541				

Table S4. Geometry of $7a \cdot 11_2$ complex optimized at PM6 semi-empirical level of theory.

s	x [Å]	y[Å]	z[Å]	s	x [Å]	y[Å]	z[Å]
С	-5.157315	-0.790813	8.730569	н	0.227946	2.335374	7.784461
S	-4.240323	-1.681232	9.990063	н	1.648746	1.124248	-1.240950
0	-5.238933	-2.106100	10.975932	н	-2.008810	-1.176980	-1.101985
0	-3.592170	-2.843779	9.246640	н	2.389070	0.073984	0.860694
0	-3.166663	-0.793201	10.473417	н	-1.271247	-2.219046	1.005514
С	-4.221978	-0.095598	7.754492	н	2.405607	1.196058	3.873798
С	-3.389206	-1.103105	6.960116	н	1.014765	1.128505	2.719446
S	4.004597	4.077580	10.034647	н	-0.872466	-1.783137	-3.363031
0	2.793612	3.985477	10.865986	н	-2.409113	-1.614488	-4.301577
0	4.938507	5.162317	10.365498	н	2.103224	1.099125	-4.366906
0	4.681074	2.726481	9.916066	н	1.531352	-0.299131	-3.378695
С	-0.711841	-0.037366	4.802540	н	-4.956097	2.521911	-2.805956
С	0.484482	0.684328	4.756151	н	-4.059282	3.378088	-1.490046
С	-1.576069	0.148604	5.913945	н	3.117993	-7.217233	7.476299
С	0.778668	1.572090	5.829190	н	5.272418	-5.982746	7.344813
С	-1.239109	0.964436	6.994014	н	-0.821141	-1.636400	-8.645636
С	-0.046174	1.688813	6.949930	н	1.322721	-0.376539	-8.664119
0	-2.810527	-0.468834	5.782762	н	-1.508739	4.948669	-1.619577
0	1.945775	2.284891	5.642851	н	-0.478909	5.319978	-3.057465
Ν	-2.930656	1.992256	-2.628118	н	-5.647506	6.054902	-5.688930
С	-3.062333	0.763046	-3.330743	н	-3.587982	7.420472	-5.711075
С	-1.593826	2.199103	-2.030307	н	3.891157	-2.436230	0.747219
Ν	-1.791168	0.125930	-3.290173	н	0.211812	-4.703098	0.947773
С	-0.787178	0.859232	-2.487147	н	4.232592	-3.215094	-1.576990
Ν	-0.877610	3.276006	-2.757468	Н	0.570717	-5.474905	-1.374092
С	0.200839	2.808719	-3.549250	н	2.578745	-4.737527	-2.646964
Ν	0.261157	1.400326	-3.381487	Н	-3.448850	1.263168	-0.236757
С	-0.250856	0.078358	-1.301299	н	0.230894	3.524193	-0.461890
С	0.998944	0.397065	-0.749860	Н	-3.418224	1.476598	2.229665
С	-1.047594	-0.888473	-0.670834	Н	0.246846	3.726401	2.004334
С	1.412511	-0.187771	0.448408	Н	-1.562712	2.686094	3.363449
С	-0.634752	-1.471001	0.529236	н	-2.842787	-1.835694	-8.403645
С	0.575783	-1.087671	1.124905	Н	-2.473813	-3.531584	-7.865457
0	-4.078245	0.307954	-3.802702	н	-4.435117	-3.276436	-6.170201
0	0.965824	3.478927	-4.212459	н	-4.834941	-1.731302	-6.914746
С	0.976375	-1.637504	2.480868	н	-4.771964	-4.432742	-8.445816
Ν	-0.188217	-1.986488	3.338395	н	-6.216834	-3.722889	-7.756522
С	-0.173596	-3.324533	3.791088	н	2.882015	4.022755	5.728152
Ν	0.988675	-3.937407	3.269836	н	1.226921	4.089044	6.455804
С	1.811389	-3.028151	2.427942	н	-0.040491	-10.478838	7.098432
Ν	1.878762	-0.740114	3.239529	н	1.596085	-10.459776	7.747391
С	3.105685	-1.351628	3.617315	Н	2.453186	-9.169019	5.811335
Ν	3.055617	-2.696609	3.160538	н	0.949208	-9.398685	4.916629
0	-1.013111	-3.862125	4.494786	Н	-0.324186	-7.982275	6.563071

0	4.037962	-0.812530	4.168666	Н	1.156259	-7.801545	7.589861
С	1.471594	0.628290	3.608646	н	1.983535	2.810839	8.449619
С	-1.444681	-1.099818	-4.033340	н	3.516713	2.386445	7.657499
С	1.196474	0.501630	-4.079281	н	4.269004	4.782783	7.746831
С	-3.981022	3.021368	-2.544764	н	2.718921	5.286900	8.403438
С	3.285380	-6.502058	6.671212	н	-7.904487	3.483624	-4.195437
С	4.496466	-5.815151	6.591042	н	-7.485411	5.243892	-4.305610
С	2.310612	-6.275289	5.698425	Н	-6.607313	4.927651	-6.628041
С	4.709191	-4.919960	5.539015	Н	-6.806565	3.172446	-6.517683
С	2.517987	-5.384548	4.610268	н	-9.216176	3.298876	-6.665442
С	3.724127	-4.680281	4.539362	н	-9.276298	4.976525	-6.152183
0	1.038607	-6.815496	5.737513	н	6.688749	-4.815960	7.238182
0	5.864596	-4.194711	5.362861	н	7.550318	-5.330305	5.727193
С	-0.426508	-1.224393	-7.716844	н	8.090947	-2.914621	5.206882
С	0.779156	-0.520755	-7.728706	н	7.148272	-2.366996	6.591146
С	-1.110861	-1.390664	-6.508466	н	9.656266	-4.178899	6.835195
С	1.271322	-0.000027	-6.532565	н	9.701872	-2.433815	6.954994
С	-0.633263	-0.837985	-5.285928	Н	-2.065895	8.679178	-4.987674
С	0.571426	-0.130677	-5.304523	Н	-0.340732	8.522843	-4.472591
0	-2.265000	-2.120254	-6.367928	н	0.233971	7.138646	-6.403886
0	2.450085	0.720861	-6.434611	н	-1.457512	6.794114	-6.779030
С	-3.755722	4.219781	-3.443252	н	-1.837870	9.151319	-7.526587
С	-2.579631	4.972521	-3.485115	н	-0.235497	9.633857	-6.989182
С	-4.859948	4.638619	-4.240986	н	4.416364	0.618080	-6.689212
С	-2.555120	6.148106	-4.287962	н	3.539553	-0.721911	-7.525707
0	-5.964427	3.818814	-4.112148	н	2.684159	0.851029	-9.267871
0	-1.386285	6.876018	-4.153904	Н	3.171818	2.249813	-8.310014
С	-1.327068	4.678326	-2.687043	н	5.660962	1.366089	-8.608749
С	-4.803027	5.769212	-5.054440	Н	5.006997	0.298991	-9.843617
С	-3.637249	6.537553	-5.075422	С	-1.190613	-0.972692	3.712412
С	2.040852	-3.536180	1.019012	С	1.433730	-5.314226	3.555978
С	3.164752	-3.112373	0.293371	С	4.087346	-3.716663	3.428744
С	1.103280	-4.381495	0.406771	Н	-2.119533	-1.510254	4.047316
С	3.357270	-3.546725	-1.020543	Н	-1.461433	-0.370490	2.810257
С	1.300577	-4.814364	-0.907168	Н	1.820674	-5.777098	2.614677
С	2.427903	-4.400243	-1.622566	Н	0.538232	-5.916504	3.867473
С	-1.619536	2.393646	-0.524463	Н	4.276848	-4.298500	2.494848
С	-2.640209	1.815289	0.245912	Н	5.038733	-3.173890	3.686151
С	-0.579462	3.081274	0.119666	С	-1.189982	3.496078	-8.699632
С	-2.621411	1.927260	1.638747	Ν	1.345989	4.521096	-8.139101
С	-0.563998	3.190709	1.512792	С	-0.424562	2.978169	-7.635546
С	-1.582064	2.611389	2.275861	С	-0.657969	4.532231	-9.469377
С	-2.948889	-2.579687	-7.584041	С	0.628840	5.017684	-9.195739
С	-4.402726	-2.732142	-7.136915	С	0.831147	3.509226	-7.355550
С	-5.229149	-3.463006	-8.181966	н	-0.813060	2.168358	-7.008967
S	-5.485635	-2.489575	-9.670578	Н	-1.233582	5.037262	-10.262269

0	-5.807368	-3.474922	-10.712185	Н	1.079260	5.853480	-9.788560
0	-6.562950	-1.518263	-9.358780	Н	1.426539	3.138876	-6.496779
0	-4.200409	-1.738031	-9.925975	С	-2.533518	2.951994	-8.996183
С	2.162536	3.512542	6.398516	Ν	-5.056935	1.922674	-9.596263
С	1.021138	-10.459877	6.810117	С	-3.656862	3.793276	-9.039612
S	1.381201	-12.008878	5.911297	С	-2.707191	1.582869	-9.252666
0	0.525029	-13.006073	6.599289	С	-3.971953	1.082799	-9.558866
0	0.987827	-11.746824	4.506940	С	-4.913824	3.264547	-9.329055
0	2.831019	-12.235075	6.100868	Н	-3.557601	4.869331	-8.847387
С	1.355641	-9.258421	5.947031	Н	-1.858912	0.892011	-9.220409
С	0.782282	-7.989767	6.571677	Н	-4.128525	-0.037829	-9.780410
С	2.768150	3.204158	7.766514	Н	-5.861008	3.906031	-9.340336
С	3.421847	4.438444	8.363603	С	2.674298	5.093437	-7.861923
С	-7.243656	4.233536	-4.671731	Н	3.418215	4.708506	-8.638522
С	-7.261915	4.133650	-6.196112	Н	3.048414	4.847305	-6.862148
С	-8.677122	4.257899	-6.734188	Н	2.644697	6.207403	-7.985697
S	-8.626701	4.813580	-8.453412	С	-6.388220	1.384033	-9.930070
0	-8.165897	6.213000	-8.395148	Н	-6.505876	1.251051	-11.016832
0	-7.612296	3.918062	-9.117191	Н	-7.207979	2.071744	-9.583988
0	-9.995467	4.618496	-8.959561	Н	-6.566872	0.371436	-9.463909
S	8.609563	-3.402558	8.860316	С	2.688151	-1.882032	8.865684
0	9.886255	-3.481935	9.579762	Ν	5.032731	-0.474376	9.396175
0	7.706661	-4.570897	8.997973	С	3.931932	-2.533256	8.846584
0	7.828292	-2.138295	9.143571	С	2.643515	-0.518669	9.199239
С	7.016797	-4.502974	6.219449	С	3.824150	0.170326	9.468608
С	7.806125	-3.194054	6.241470	С	5.096089	-1.816061	9.114922
С	9.043811	-3.306005	7.118452	Н	4.015063	-3.600876	8.616065
S	-0.120265	8.285057	-8.971139	Н	1.693911	0.024588	9.236152
0	0.021363	9.541134	-9.722143	Н	3.848083	1.295250	9.749418
0	-1.064005	7.291288	-9.549844	Н	6.147097	-2.298635	9.104255
0	1.170004	7.593764	-8.648788	С	1.448093	-2.606302	8.514452
С	-1.173448	8.033500	-5.011754	Ν	-0.902954	-3.907474	7.766793
С	-0.780068	7.600154	-6.422335	С	1.424386	-3.459717	7.393999
С	-0.810673	8.778428	-7.379381	С	0.272344	-2.444745	9.259592
С	3.549553	0.359148	-7.326857	С	-0.897931	-3.099462	8.872598
С	3.483483	1.214381	-8.588875	С	0.248388	-4.108601	7.035029
С	4.818224	1.241295	-9.307489	Н	2.324456	-3.608903	6.779747
S	4.861361	2.620358	-10.495486	Н	0.237074	-1.794432	10.142842
0	6.229307	3.161662	-10.360897	Н	-1.906499	-2.949576	9.425624
0	4.562563	2.012647	-11.804533	Н	0.194788	-4.784008	6.149524
0	3.804160	3.565082	-10.012964	С	6.282332	0.286776	9.612075
Н	-5.840519	-1.480875	8.205222	Н	7.074551	-0.355223	10.066241
Н	-5.822119	-0.051412	9.212373	н	6.099888	1.202884	10.227030
Н	-4.799559	0.536705	7.050273	н	6.689217	0.636628	8.643594
Н	-3.546633	0.603645	8.303180	С	-2.153792	-4.568624	7.336231
н	-2.595010	-1.573139	7.564118	Н	-2.115232	-5.655311	7.515311

Н	-4.009482	-1.888130	6.487709	Н	-2.332666	-4.394766	6.251963
н	-1.902817	1.042965	7.861431	Н	-3.039202	-4.158716	7.902753

References

- (1) Pons, M.; Millet, O. Prog. Nucl. Magn. Reson. Spectrosc. 2001, 38 (4), 267.
- (2) *Spartan'14*; Wavefunction: Irvine, CA, USA, 2014.
- (3) Stewart, J. J. P. J. Mol. Model. **2007**, 13 (12), 1173–1213.
- (4) Becke, A. D. *Phys. Rev. A* **1988**, *38* (6), 3098–3100.
- (5) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. *J. Chem. Phys.* **1988**, *89* (4), 2193.
- (6) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* **1988**, *37* (2), 785–789.