Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supporting Information

Table of Contents

Characterization of 3a–b and 3d–f	2
Characterization of 4c-g	5
Spectra of 3a–b and 3d–f	8
Spectra of 4c–g	23
Crystal data for 3a–b and 3d–e	.35
Crystal data for 3f , 4c , 4f and [2c H][PtCl ₃ (Me ₂ SO)]	.36
Concentration-effect curves of 3b , 3d –e and 4c –e	37

3a. Yield: 96% (80.3 mg). Mp: 142 °C (dec). Anal. Calcd for $C_4H_{12}N_2Cl_2O_2PtS$: C, 11.49; H, 2.89; N, 6.70. Found: C, 11.68; H, 2.74; N, 6.88. HRESI⁺-MS (MeOH, *m/z*): 346.0153 ([M – 2Cl – H]⁺, calcd 346.0183), 382.9909 ([M – Cl]⁺, calcd 382.9937), 440.9490 ([M + Na]⁺, calcd 440.9515), 800.9536 ([2M – Cl]⁺, calcd 800.9561), 858.9113 ([2M + Na]⁺, calcd 858.9142). IR (KBr, selected bonds, cm⁻¹): 3480(m-s), 3366(s), 3215(s) v(O–H) and v(N–H); 2998(m), 2926(w-m), 2785(w) v(C–H); 1663(vs) v(C=N); 1105(vs) v(S=O). ¹H NMR (CD₃OD, δ): 3.45 (s, br, 6H, S(*CH*₃)₂), 2.36 (s, 3H, *CH*₃). ¹³C {¹H} NMR (CD₃OD, δ): 158.29 (*C*(NH₂)=NOH), 43.20 (s, *CH*₃), 42.96 (s, *CH*₃), 17.64 (*C*H₃). Crystals of **3a** suitable for X-ray diffraction were obtained by the slow evaporation of MeOH solution at RT in air.

3b. Yield: 83% (71.8 mg). Mp: 160 °C (dec). Anal. Calcd for $C_5H_{14}N_2Cl_2O_2PtS$: C, 13.89; H, 3.26; N, 6.48. Found: C, 13.89; H, 3.12; N, 6.54. HRESI⁺-MS (MeOH, *m/z*): 360.0320 ([M – 2Cl – H]⁺, calcd 360.0340), 418.9885 ([M – Cl – H + Na]⁺, calcd 418.9913), 454.9648 ([M + Na]⁺, calcd 454.9672), 812.9913 ([2M – 2Cl – 2H + Na]⁺, calcd 812.9937), 886.9433 ([2M + Na]⁺, calcd 886.9456), 1245.9653 ([3M – 2Cl – 2H + Na]⁺, calcd 1245.9721). IR (KBr, selected bonds, cm⁻¹): 3462(s), 3378(vs), 3233(s) v(O–H) and v(N–H); 3009(w-m), 2914(w-m), 2803(w) v(C–H); 1659(vs) v(C=N); 1117(s) v(S=O). ¹H NMR (CD₃OD, δ): 3.46 (s, 3H, CH₃), 3.44 (s, 3H, CH₃),

2.92–2.76 (m, 2H, CH_2), 1.32 (t, 3H, CH_3). ¹³C{¹H} NMR (CD₃OD, δ): 162.29 (*C*(NH₂)=NOH), 43.31 (s, *C*H₃), 42.98 (s, *C*H₃), 26.08 (*C*H₂), 10.17 (*C*H₃). Crystals of **3b** suitable for X-ray diffraction were obtained by the slow evaporation of MeOH solution at RT in air.

3d. Yield: 92% (88.4 mg). Mp: 149 °C (dec). Anal. Calcd for C₉H₁₄N₂Cl₂O₂PtS: C, 22.51; H, 2.94; N, 5.83. Found: C, 22.58; H, 2.88; N, 5.84. HRESI⁺-MS (MeOH, *m/z*): 408.0325 ([M – 2Cl – H]⁺, calcd 408.0341), 445.0087 ([M – Cl]⁺, calcd 445.0095), 502.9661 ([M + Na]⁺, calcd 502.9674), 518.9390 ([M + K]⁺, calcd 518.9412), 924.9872 ([2M – Cl]⁺, calcd 924.9878), 982.9455 ([2M + Na]⁺, calcd 982.9459), 998.9189 ([2M + K]⁺, calcd 998.9198). IR (KBr, selected bonds, cm⁻¹): 3451(s), 3320(s) v(O–H) and v(N–H); 3187(m), 3005(w-m), 2924(w) v(C–H); 1655(vs) v(C=N); 1138(m) v(S=O). ¹H NMR (CD₃OD, δ): 8.02 (d, 2H, CH), 7.63 (t, 1H, CH), 7.57 (t, 2H, CH), 3.37 (s, 3H, CH₃), 2.59 (s, 3H, CH₃). ¹³C{¹H} NMR (CD₃OD, δ): 159.05 (*C*(NH₂)=NOH), 132.46 (*C*–C(NH₂)=NOH), 130.74 (*p*-*C*), 129.60, 127.83 (*o*- and *m*-*C*), 42.95 (CH₃), 42.48 (CH₃). Crystals of **3d**•MeOH suitable for X-ray diffraction were obtained by the slow evaporation of MeOH solution at RT in air.

3e•½H₂O. Yield: 97% (108.1 mg). Mp: 185 °C (dec). Anal. Calcd for C₁₀H₁₃N₂Cl₂F₃O₂PtS•½H₂O: C, 21.55; H, 2.53; N, 5.03. Found: C, 21.48; H, 2.70; N, 5.01. HRESI⁺-MS (MeOH, *m/z*): 476.0230 ([M – 2Cl – H]⁺, calcd 476.0215), 512.9982 ([M – Cl]⁺, calcd 512.9970), 570.9570 ([M + Na]⁺, calcd 570.9548), 1060.9621 ([2M – Cl]⁺, calcd 1060.9627), 1118.9207 ([2M + Na]⁺, calcd 1118.9208), 1134.8940 ([2M + K]⁺, calcd 1134.8946). IR (KBr, selected bonds, cm⁻¹): 3451(s), 3342(s) v(O–H) and v(N–H); 3185(w-m), 3027(w), 3002(w), 2920(w-m) v(C–H); 1661(vs) v(C=N); 1138(s) v(S=O). ¹H NMR (CD₃OD, δ): 8.17 (d, 2H, *CH*), 7.90 (d, 2H, *CH*), 3.41 (s, 3H, *CH*₃), 2.73 (s, 3H, *CH*₃). ¹³C {¹H} NMR (CD₃OD, δ): 157.89 (s, *C*(NH₂)=NOH), 136.24 (s, *C*–C(NH₂)=NOH), 132.30 (q, J²_{CF} = 32 Hz, *C*–CF₃), 130.44 (s, *C*–C–C–CF₃), 124.71 (q, J³_{CF} = 4 Hz, *C*–C–CF₃), 123.88 (q J¹_{CF} = 272 Hz, *C*F₃), 43.11 (s, *C*H₃), 42.55 (s, *C*H₃). Crystals of **3e** suitable for X-ray diffraction were obtained by the slow evaporation of MeOH solution at RT in air.

3f. Yield: 98% (102.9 mg). Mp: 183 °C (dec). Anal. Calcd for C₉H₁₃N₃Cl₂O₄PtS: C, 21.65; H, 3.52; N, 6.39. Found: C, 21.73; H, 3.41; N, 6.48. HRESI⁺-MS (MeOH, *m/z*): 453.0172 ($[M - 2CI - H]^+$, calcd 453.0191), 489.9923 ($[M - CI]^+$, calcd 489.9946), 547.9517 ($[M + Na]^+$, calcd 547.9524), 1014.9577 ($[2M - CI]^+$, calcd 1014.9580), 1072.9157 ($[2M + Na]^+$, calcd 1072.9161). IR (KBr, selected bonds, cm⁻¹): 3439(s), 3335(s) v(O–H) and v(N–H); 3185(m), 3107(w), 3079(w), 3001(w-m), 2918(w-m) v(C–H); 1661(vs) v(C=N); 1520(vs) v(N=O)_{as}; 1346(vs) v(N=O)_{s}; 1136(s) v(S=O).¹H NMR (CD₃OD, δ): 8.43 (d, 2H, *CH*), 8.19 (d, 2H, *CH*), 3.42 (s, 3H, *CH*₃), 2.83 (s, 3H, *CH*₃). CP-MAS TOSS ¹³C{¹H} NMR (δ): 155.19 (*C*(NH₂)=NOH), 149.60, 148.08, 146.40, 138.11, 133.02, 129.73, 123.36, 122.12 (Ar), 46.59, 44.17, 42.66, 40.18 (s, *C*H₃). Crystals of **3f** suitable for X-ray diffraction were obtained by the slow evaporation of MeNO₂ solution at RT in air.

4c. Yield: 86% (80.1 mg). Mp: 189 °C (dec). Anal. Calcd for C₉H₂₂N₂O₃PtS₂: C, 23.22; H, 4.76; N, 6.02. Found: C, 23.04; H, 4.71; N, 6.09. HRESI⁺-MS (MeOH, *m/z*): 466.0783 ([M + H]⁺, calcd 466.0793). IR (KBr, selected bonds, cm⁻¹): 3420(w-m), 3360(m), 3295(m) v(N–H); 3003(m), 2969(m), 2913(m), 2870(w) v(C–H); 1630(w) v(C=N); 1126(vs) v(S=O). ¹H NMR (CDCl₃, δ): 4.85 (s+d, J^2_{PtH} = 112 Hz, br, 1H, N*H*), 3.51 (s+d, J^3_{PtH} = 17 Hz, 6H, S(C*H*₃)₂), 3.48 (s+d, J^3_{PtH} = 15 Hz, 6H, S(C*H*₃)₂), 1.31 (s, 9H, C(C*H*₃)₃). ¹³C{¹H} NMR (CDCl₃, δ): 168.94 (s, *C*(NH)=NO), 47.02 (s+d, J^2_{PtC} = 36 Hz, S(*C*H₃)₂), 46.32 (s+d, J^2_{PtC} = 34 Hz, S(*C*H₃)₂), 32.26 (s, *C*(CH₃)₃), 29.88 (s, C(CH₃)₃). Crystals of **4c** suitable for X-ray diffraction were obtained by the slow evaporation of MeNO₂ solution at RT in air.

4**d**•H₂O. Yield: 74% (74.5 mg). Mp: 190 °C (dec). Anal. Calcd for C₁₁H₁₈N₂O₃PtS₂•H₂O: C, 26.24; H, 4.00; N, 5.56. Found: C, 26.03; H, 3.94; N, 5.60. HRESI⁺-MS (*m/z*): 486.0399 ([M + H]⁺, calcd 486.0480). IR (KBr, selected bonds, cm⁻¹): 3337(m) v(N–H); 2986(m), 2909(w-m) v(C–H); 1638(w) v(C=N); 1126(vs) v(S=O). ¹H NMR (CDCl₃, *δ*): 7.77–7.73 (m, 2H, *o*-CH), 7.36–7.32 (m, 3H, *m*-, *p*-CH), 5.52 (s+d, $J^2_{PtH} = 112$ Hz, br, 1H, NH), 3.56 (s+d, $J^3_{PtH} = 24$ Hz, 6H, S(CH₃)₂), 3.54 (s+d, $J^3_{PtH} = 24$ Hz, 6H, S(CH₃)₂). ¹³C{¹H} NMR (CDCl₃, *δ*): 161.46 (s, *C*(NH)=NO), 130.50 (s, *C*-

C(NH)=NO), 128.45 (s, *p*-CH), 128.29, 126.74 (2s, *o*-, *m*-CH), 47.01 (s+d, $J^2_{PtC} = 38$ Hz, S(CH₃)₂), 46.23 (s+d, $J^2_{PtC} = 34$ Hz, S(CH₃)₂).

4e•H₂O. Yield: 78% (89.2 mg). Mp: 213 °C (dec). Anal. Calcd for C₁₂H₁₇N₂F₃O₃PtS₂•H₂O: C, 25.22; H, 3.35; N, 4.90. Found: C, 25.13; H, 3.51; N, 4.98. HRESI⁺-MS (*m/z*): 476.0206 ([M – Me₂SO + H]⁺, calcd 476.0215), 554.0364 ([M + H]⁺, calcd 554.0354). IR (KBr, selected bonds, cm⁻¹): 3337(m) v(N–H); 3013(w-m), 2990(m), 2911(m) v(C–H); 1618(m) v(C=N); 1123(vs) v(S=O). ¹H NMR (CDCl₃, *δ*): 7.86 (d, 2H, *CH*), 7.59 (d, 2H, *CH*), 5.26 (s+d, J^2_{PtH} = 108 Hz, br, 1H, NH), 3.57 (s+d, J^3_{PtH} = 20 Hz, 6H, S(*CH*₃)₂), 3.54 (s+d, J^3_{PtH} = 20 Hz, 6H, S(*CH*₃)₂). ¹³C {¹H} NMR (CDCl₃, *δ*): 160.26 (s, *C*(NH)=NO), 133.90 (s, *C*-C(NH)=NO), 130.21 (q, J^2_{CF} = 32 Hz, *C*-CF₃), 126.82 (s, *C*-C-C-CF₃), 125.30 (q, J^3_{CF} = 4 Hz, *C*-C-CF₃), 124.18 (q J^1_{CF} = 272 Hz, *C*F₃), 46.97 (s+d, J^2_{PtC} = 39 Hz, S(*C*H₃)₂), 46.33 (s+d, J^2_{PtC} = 32 Hz, S(*C*H₃)₂).

4f•H₂O. Yield: 95% (104.1 mg). Mp: 210 °C (dec). Anal. Calcd for C₁₁H₁₇N₃O₅PtS₂•H₂O: C, 24.09; H, 3.49; N, 7.66. Found: C, 23.99; H, 3.54; N, 7.65. HRESI⁺-MS (*m/z*): 531.0306 ([M + H]⁺, calcd 531.0331), 553.0104 ([M + Na]⁺, calcd 553.0150). IR (KBr, selected bonds, cm⁻¹): 3414(m), 3335(m) v(N–H); 2990(m), 2913(m) v(C–H); 1597(m) v(C=N); 1516(m-s) v(N=O)_{as}; 1341(s) $v(N=O)_{s}$; 1130(vs) v(S=O). ¹H NMR (CDCl₃, δ): 8.20 (d, 2H, CH), 7.92 (d, 2H, CH), 5.27 (s+d, $J_{PtH}^2 = 108$ Hz, br, 1H, N*H*), 3.58 (s+d, $J_{PtH}^3 = 20$ Hz, 6H, S(C*H*₃)₂), 3.55 (s+d, $J_{PtH}^3 = 20$ Hz, 6H, S(C*H*₃)₂). CP-MAS TOSS ¹³C{¹H} NMR (CDCl₃, δ): 161.75 (*C*(NH)=NO), 148.61, 145.56, 135.64, 123.33 (Ar), 45.47 (S(CH₃)₂), 41.01 (S(CH₃)₂). Crystals of **4f** suitable for X-ray diffraction were obtained by the slow evaporation of MeOH solution at RT in air.

4g•H₂O. Yield: 91% (91.7 mg). Mp: 218 °C (dec). Anal. Calcd for C₁₀H₁₇N₃O₃PtS₂•H₂O: C, 23.81; H, 3.80; N, 8.33. Found: C, 23.76; H, 3.84; N, 8.30. HRESI⁺-MS (*m/z*): 487.0412 ([M + H]⁺, calcd 487.0432), 509.0210 ([M + Na]⁺, calcd 509.0252). IR (KBr, selected bonds, cm⁻¹): 3422(m) v(N– H); 2994(w-m), 2913(w-m) v(C–H); 1597(m) v(C=N); 1130(s) v(S=O). ¹H NMR (CDCl₃, δ): 8.59 (d, 2H, *CH*), 7.62 (d, 2H, *CH*), 5.28 (s+d, J^2_{PtH} = 88 Hz, br, 1H, NH), 3.58 (s+d, J^3_{PtH} = 12 Hz, 6H, S(*CH*₃)₂), 3.54 (s+d, J^3_{PtH} = 12 Hz, 6H, S(*CH*₃)₂). ¹³C{¹H} NMR (CDCl₃, δ): 159.19 (*C*(NH)=NO), 150.04 (*C*H), 137.71 (*C*-C(NH)=NO), 120.76 (*C*H), 46.96 (S(*C*H₃)₂), 46.39 (S(*C*H₃)₂).

Spectra of 3a-b and 3d-f

Figure S3. IR spectrum of 3a.

Figure S4. ¹H NMR spectrum of 3a.

Figure S5. ${}^{13}C{}^{1}H$ NMR spectrum of 3a.

Me Me CI S O CI N OH Me NH₂

3b

Figure S6. HR ESI⁺-MS spectrum of 3b.

Figure S7. HR ESI⁺-MS spectrum of **3b** (low region).

Figure S8. IR spectrum of 3b.

Figure S9. ¹H NMR spectrum of 3b.

Figure S10. $^{13}C\{^{1}H\}$ NMR spectrum of 3b.

Figure S11. HR ESI⁺-MS spectrum of 3d.

Figure S12. HR ESI+-MS spectrum of 3d (low region).

Figure S13. IR spectrum of 3d.

Figure S14. ¹H NMR spectrum of 3d.

Figure S15. $^{13}C\{^{1}H\}$ NMR spectrum of 3d.

Figure S16. HR ESI⁺-MS spectrum of 3e.

Figure S17. HR ESI⁺-MS spectrum of 3e (low region).

Figure S18. IR spectrum of 3e.

Figure S20. ${}^{13}C{}^{1}H$ NMR spectrum of 3e.

Figure S21. HR ESI+-MS spectrum of 3f.

Figure S23. IR spectrum of 3f.

Figure S24. ¹H NMR spectrum of 3f.

Figure S25. CP-MAS TOSS ${}^{13}C{}^{1}H$ NMR spectrum of 3f.

Spectra of 4a-g

4a

Figure S26. HR ESI⁺-MS spectrum of 4a reaction mixture.

Figure S27. HR ESI+-MS spectrum of 4a reaction mixture.

Figure S28. HR ESI+-MS spectrum of 4b reaction mixture.

Figure S29. HR ESI+-MS spectrum of 4b reaction mixture.

4c

Figure S30. HR ESI⁺-MS spectrum of 4c.

Figure S31. IR spectrum of 4c.

Figure S32. ¹H NMR spectrum of 4c.

Figure S33. $^{13}C\{^{1}H\}$ NMR spectrum of 4c.

Figure S34. HR ESI⁺-MS spectrum of 4d.

Figure S35. IR spectrum of 4d.

Figure S36. ¹H NMR spectrum of 4d.

Figure S37. ${}^{13}C{}^{1}H$ NMR spectrum of 4d.

4e

Figure S38. HR ESI⁺-MS spectrum of 4e.

Figure S39. IR spectrum of 4e.

Figure S40. ¹H NMR spectrum of 4e.

Figure S41. ${}^{13}C{}^{1}H$ NMR spectrum of 4e.

4f

Figure S42. HR ESI⁺-MS spectrum of 4f.

Figure S43. IR spectrum of 4f.

Figure S45. CP-MAS TOSS ¹³C{¹H} NMR spectrum of 4f.

Figure S46. HR ESI⁺-MS spectrum of 4g.

Figure S47. IR spectrum of 4g.

Figure S48. ¹H NMR spectrum of 4g.

Figure S49. ${}^{13}C{}^{1}H$ NMR spectrum of 4g.

Identification code	3 a	3b	3d	3 e
Empirical formula	C ₄ H ₁₂ Cl ₂ N ₂ O ₂ PtS	C ₅ H ₁₄ Cl ₂ N ₂ O ₂ PtS	$C_{10}H_{18}Cl_2N_2O_3PtS$	$C_{10}H_{13}Cl_2F_3N_2O_2PtS$
Formula weight	418.21	432.23	512.31	548.27
Temperature/K	100(2)	100(2)	100(2)	100(2)
Crystal system	monoclinic	triclinic	monoclinic	triclinic
Space group	$P2_1/c$	P-1	$P2_1/c$	P-1
a/Å	8.0458(6)	7.7950(7)	7.7751(2)	7.1487(4)
b/Å	11.8336(7)	8.6094(9)	15.9278(5)	8.9180(5)
c/Å	12.2420(15)	9.4837(9)	13.8379(4)	13.5059(9)
$\alpha/^{\circ}$	90	99.166(8)	90	82.385(5)
β/°	112.759(8)	91.628(8)	103.110(3)	87.679(5)
γ/°	90	114.355(9)	90	66.909(6)
Volume/Å ³	1074.82(18)	569.26(10)	1669.01(8)	785.01(9)
Z	4	2	4	2
$\rho_{calc}g/cm^3$	2.584	2.522	2.039	2.320
μ/mm ⁻¹	13.712	12.950	8.856	9.444
F(000)	776.0	404.0	976.0	516.0
Crystal size/mm ³	$0.2 \times 0.15 \times 0.15$	0.25 imes 0.25 imes 0.2	$0.2 \times 0.2 \times 0.15$	$0.15 \times 0.1 \times 0.1$
Radiation	$MoK\alpha (\lambda = 0.71073)$	$MoK\alpha (\lambda = 0.71073)$	$MoK\alpha (\lambda = 0.71073)$	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	5.49 to 54.976	5.288 to 55	5.38 to 54.994	5.006 to 54.99
Index ranges	$-10 \le h \le 9, -15 \le k \le 15, -15 \le l \le 15$	$-8 \le h \le 10, -11 \le k \le 10, -11 \le l \le 12$	$-10 \le h \le 7, -10 \le k \le 20, -17 \le l \le 17$	$-9 \le h \le 9, -11 \le k \le 11, -17 \le l \le 17$
Reflections collected	8752	4656	7727	12183
Independent reflections	2472 [$R_{int} = 0.0556$, $R_{sigma} = 0.0530$]	$2607 [R_{int} = 0.0265, R_{sigma} = 0.0456]$	$3821 [R_{int} = 0.0276, R_{sigma} = 0.0444]$	$3602 [R_{int} = 0.0345, R_{sigma} = 0.0392]$
Data/restraints/parameters	2472/0/112	2607/6/139	3821/0/177	3602/0/193
Goodness-of-fit on F ²	1.020	1.038	1.066	1.023
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0273, wR_2 = 0.0503$	$R_1 = 0.0311, wR_2 = 0.0657$	$R_1 = 0.0252, wR_2 = 0.0475$	$R_1 = 0.0222, wR_2 = 0.0450$
Final R indexes [all data]	$R_1 = 0.0376, wR_2 = 0.0545$	$R_1 = 0.0342, wR_2 = 0.0679$	$R_1 = 0.0312, wR_2 = 0.0497$	$R_1 = 0.0270, wR_2 = 0.0461$
Largest diff. peak/hole / e Å ⁻³	1.32/-1.64	1.93/-2.50	1.21/-0.82	1.07/-0.87
CCDC number	1475389	1475381	1475378	1475377

Table S1. Crystal data for 3a–b and 3d–e.

Identification code	3f	4c	4f	by-product_3c
Empirical formula	$C_9H_{13}Cl_2N_3O_4PtS$	$C_9H_{22}N_2O_3PtS_2$	$C_{11}H_{17}N_3O_5PtS_2$	$C_7H_{19}Cl_3N_2O_2PtS$
Formula weight	525.27	465.49	530.48	496.74
Temperature/K	100(2)	100(2)	100(2)	100(2)
Crystal system	triclinic	orthorhombic	triclinic	monoclinic
Space group	P-1	Cmce	P-1	P2 ₁ /c
a/Å	7.0238(3)	9.3250(8)	8.7261(2)	6.5859(2)
b/Å	9.0811(4)	18.8767(15)	10.2167(3)	19.2634(7)
c/Å	12.9083(3)	17.497(2)	18.8842(4)	12.7960(5)
α/°	91.147(3)	90	74.480(2)	90
β/°	94.584(3)	90	80.247(2)	116.115(3)
γ/°	111.834(4)	90	87.869(2)	90
Volume/Å ³	760.73(5)	3079.9(5)	1598.67(8)	1457.66(10)
Ζ	2	8	4	4
$\rho_{calc}g/cm^3$	2.293	2.008	2.204	2.264
µ/mm ⁻¹	9.724	9.382	19.111	10.308
F(000)	496.0	1792.0	1016.0	944.0
Crystal size/mm ³	0.3 imes 0.3 imes 0.2	0.3 imes 0.15 imes 0.15	0.35 imes 0.12 imes 0.06	0.1 imes 0.1 imes 0.1
Radiation	$MoK\alpha (\lambda = 0.71073)$	$MoK\alpha (\lambda = 0.71073)$	$CuK\alpha \ (\lambda = 1.54184)$	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.642 to 54.996	5.4 to 54.948	8.984 to 149.968	5.52 to 54.992
Index ranges	$-9 \le h \le 9, -11 \le k \le 11, -16 \le l \le 16$	$-12 \le h \le 6, -24 \le k \le 24, -12 \le l \le 21$	$-10 \le h \le 10, -12 \le k \le 12, -20 \le l \le 23$	$-6 \le h \le 8, -25 \le k \le 17, -16 \le l \le 15$
Reflections collected	34901	5640	24766	7442
Independent reflections	$3488 [R_{int} = 0.0655, R_{sigma} = 0.0289]$	$1809 [R_{int} = 0.0234, R_{sigma} = 0.0239]$	$6576 [R_{int} = 0.0576, R_{sigma} = 0.0434]$	$3352 [R_{int} = 0.0284, R_{sigma} = 0.0391]$
Data/restraints/parameters	3488/0/184	1809/0/97	6576/0/399	3352/0/150
Goodness-of-fit on F ²	1.055	1.121	1.084	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0208, wR_2 = 0.0438$	$R_1 = 0.0245, wR_2 = 0.0597$	$R_1 = 0.0313, wR_2 = 0.0760$	$R_1 = 0.0234, wR_2 = 0.0444$
Final R indexes [all data]	$R_1 = 0.0224, wR_2 = 0.0444$	$R_1 = 0.0282, wR_2 = 0.0615$	$R_1 = 0.0377, wR_2 = 0.0812$	$R_1 = 0.0292, wR_2 = 0.0462$
Largest diff. peak/hole / e Å ⁻³	1.27/-1.20	2.75/-1.15	1.75/-1.47	1.77/-0.96
CCDC number	1475399	1475400	1475683	1475446

Table S2. Crystal data for 3f, 4c, 4f and [2cH][PtCl₃(Me₂SO)].

Figure S50. Concentration-effect curves of 3b, 3d–e and 4c–e in CH1/PA-1 cells.

Figure S51. Concentration-effect curves of 3b, 3d-e and 4c-e in SW480 cells.

Figure S52. Concentration-effect curves of 3b, 3d–e and 4c–e in A549 cells.

Figure S53. Concentration-effect curves of 3b, 3d–e and 4c–e in SKBR3 cells.