Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

A facile route by using FeCl₃ to prepare dimeric BODIPY based porous organic polymers

De-Gao Wang,^a Fan Song,^a Hui Tang,^b Xin-Ru Jia,^c Min Song^a* and Gui-Chao

Kuang^{a*}

^aState Key laboratory of Power metallurgy, Central South University, Changsha,

Hunan 410083, China

^bState Key Laboratory of Molecular Engineering of Polymers, Fudan University

Shanghai, 200438, China

^cBeijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer

Chemistry and Physics of the Ministry of Education, College of Chemistry and

Molecular Engineering, Peking University, Beijing, 100871, China

E-mail: gckuang@csu.edu.cn, msong@csu.edu.cn

Table of Content

1.	Materials and methods	2
2.	Synthesis	3
3.	FTIR spectra	6
4.	Solid-state NMR spectra	7
5.	TGA analysis	8
6.	EDS analysis results	8.
7	Time dependent absorption spectra of DPBF in dimethylfor	mamide
	(DMF) upon irradiation	9
8.	Solid emission spectra of POPs researched in this work	10
9.	Porous properties comparison of BDP-POP-1 synthesized in CH	Cl ₃ and
	CH ₂ ClCH ₂ Cl	10
10.	Singlet oxygen generation comparasion of BDP-POP-1 synthes	sized in
	CHCl ₃ and CH ₂ ClCH ₂ Cl	11
11.	¹ H NMR and Mass spectra of dimeric BODIPY monomers	11

1. Materials and methods

1.1 Materials.

All chemical reagents were commercially available and used as received unless otherwise stated. Dichloromethane was dried by standard methods using CaCl₂ before distillation using distilling apparatus. All reactions were performed under an inert atmosphere of nitrogen. Analytical thin-layer chromatography (TLC) was performed using TLC plates pre-coated with silica gel (TLC: 10-40 μ m, 0.2±0.03 mm). Flash column chromatography was performed using 40-63 μ m (230-400 mesh) silica gels as the stationary phase.

1.2 Structure Characterization and Analysis.

The ¹H and ¹³C NMR spectra were obtained from a Bruker Avance spectrometer at 500 and 125 MHz respectively. All chemical shifts were reported in δ units relative to tetramethylsilane (TMS). A Hitachi U-5100 was used to measure UV-vis absorption spectra. A Hitachi F-2700 was used to perform fluorescence measurements. A high resolution mass spectrum was obtained by using a Tsq quantum access max from Thermo. Fourier transform infrared (FTIR) spectra were obtained on a Nicolet 6700 and reported in terms of the frequency of absorption (cm⁻¹). Samples were prepared by dispersing in anhydrous KBr. Solid-state cross-polarization magic angle spinning (CP/MAS) NMR spectra were recorded from a AVANCE III 400 MHz produced by Bruker. Thermogravimetric analyses were conducted in an N₂ stream with an SDT Q600 V8.0 Build 95 analyzer. The samples were heated from room temperature to 800 °C with a heating rate of 10 °C min⁻¹ under N₂ atmosphere. Scanning electron microscopy (SEM) images and Energy-dispersive X-ray spectroscopy (EDS) measurements of POPs were made in a FEI SIRION200 microscopy with an accelerating voltage of 10 and 20 kV respectively. All the samples were coated with gold before test. High-resolution transmission electron microscopy (HR-TEM) images of BDPs were performed on a JEOL JEM-2100F microscopy with an accelerating voltage of 200 kV. Prior to TEM measurements, samples were ultrasonically dispersed in ethanol and dropped to a copper grid with a diameter of 3 mm and coated with carbon film. Nitrogen sorption isotherms were measured at 77 K with a Micromeritics ASAP 2020 sorption analyzer. According to the absorption-desorption isotherms, BET (Brunauer-Emmett-Teller) specific surface area, pore size distribution and pore volume could be evaluated. Before each measurement, the samples were degassed at 120 °C for 6 h.

2. Synthesis

2.1 Synthesis of BDP-0

BDP-0 was prepared according to the literature.^[1] Crush product was purified via chromatography silica gel column with an eluting solvent petroleum ether (PE- DCM (v/v = 2:1) and afford the product **BDP-0** as red power (50 mg). ¹H NMR (500 MHz, CDCl₃) δ : 6.02 (s, 4H, pyrrole-H), 2.57 (s, 12H, CH₃), 1.90 (s, 12H, CH₃).

2.2 Synthesis of BDP-1

BDP-1 was prepared according to the literature.^[2] Crush product was purified by chromatography silica gel column with an eluting solvent PE-DCM (v/v = 1:1) and afford the product **BDP-1** as red power (180 mg). ¹H NMR (500 MHz, CDCl₃) δ : 7.52 (s, 4H, Ar-H), 6.01 (s, 4H, pyrrole-H), 2.57 (s, 12H, CH₃), 1.52 (s, 12H, CH₃).

2.3 Synthesis of BDP-2

4,4'-Biphenyldicarboxaldehyde (631 mg, 3 mmol) was dissolved in dry DCM (100 ml), followed by dropwise addition of 2,4-dimethylpyrrole (1142 mg, 12 mmol). After that, catalytic amount of TFA was added to the mixture. The reaction system was degassed for 2 minutes and protected by a N₂ atmosphere. After oxidation by 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 1430 mg, 6.3 mmol), the product was complexed with boron trifluoride etherate (BF₃·OEt₂) without further purification. After a 16 h, the solvent was evaporated under vacuum and the dark residue was purified by chromatography silica gel column with an eluting solvent PE-DCM (v/v = 1:1) and afforded product **BDP-2** as a red power (181 mg). Due to the bad solubility, no satisfied ¹³C NMR spectrum of **BDP-2** could be obtained. ¹H NMR (500 MHz, CDCl₃): δ = 7.82 (d, 4H, Ar-H), 7.41 (d, 4H, Ar-H), 6.01 (s, 4H, pyrrole-H) 2.57 (s, 12H, CH₃), 1.48 (s, 12H, CH₃). HRMS-EI calcd for C₃₈H₃₇B₂F₄N₄ 646.3062, found [M+H]⁺ 647.2916; [M+Na]⁺ 669.2738; [M+K]⁺ 685.4121.

2.4 General synthetic procedure for the BDP-POPs

The preparation and treatment of **BDP-POP-n** (n = 0, 1 and 2) were in a similar way.

A typically procedure for preparation of **BDP-POP-1** was given as follows: **BDP-1** (100 mg, 0.175 mmol) was dissolved in anhydrous 1,2-dichloroethane (8 mL). The mixture was degassed by three freeze-pump-thaw cycles and then FeCl₃ (234 mg, 1.44 mmol) was added into the mixture under N₂ atmosphere. After that, the mixture was degassed by three freeze-pump-thaw cycles and then kept at room temperature with stirring for 48 h. The precipitate was obtained by filtration washed by vast quantities of dichloromethane, tetrahydrofuran and chloroform. To guarantee a total removal of impurities, the precipitate was further purified by Soxhlet extraction with tetrahydrofuran, acetone, chloroform, methanol and water for 24 hours, respectively. Finally, the solid was freeze-dried for 3 days to afford black powders **BDP-POP-1** (70 mg, 70 %). **BDP-POP-0** and **BDP-POP-2** were synthesized by the similar route with yield 65% and 80%, respectively.

References

- [1] L. Wang, J. Cao, J. Wang, Q. Chen, A. Cui and M. He, *RSC Adv.*, 2014, **45**, 14786-14790.
- [2] J. Y. Liu, Y. Huang, R. Menting, B. Röder, E. A. Ermilov and D. K. P. Ng, Chem. Commun., 2013, 49, 2998-3000.

3. FTIR spectra

Fig S1. FT-IR spectra of BODIPY-based monomers and POPs.

4. Solid-state NMR spectra

Fig S2. ¹³C CP-MAS solid-state NMR spectra of **BDP-POP-n** (n = 0, 1 and 2).

5. TGA analysis

6. EDS analysis results

Fig S4. EDS results of (a) BDP-POP-0, (b) BDP-POP-1 and (c) BDP-POP-2.

Fig S5. EDS mapping results of (a) BDP-POP-0, (b) BDP-POP-1 and (c) BDP-POP-2.

7. Time dependent absorption spectra of DPBF in dimethylformamide (DMF) upon irradiation.

Fig S6. Time dependent absorption spectra of DPBF in dimethylformamide (DMF) upon irradiation with a low power green LED lamp: (a) **BDP-0**, (b) **BDP-1**, (c) **BDP-2**. (d) decay kinetics of DPBF with different BDPs. Test conditions: DPBF $(4 \times 10^{-5} \text{ M})$ in DMF (2.5 mL) solution with BDP $(6.4 \times 10^{-6} \text{ M})$ for (a), (b) and (c), respectively.

8. Solid emission spectra of POPs researched in this work.

Fig. S7 Solid emission spectra of (a) BDP-POP-0, (b) BDP-POP-1 and (c) BDP-POP-2.

9. Porous properties comparison of BDP-POP-1 synthesized in CHCl₃ and CH₂ClCH₂Cl.

Fig. S8 (a) Nitrogen adsorption-desorption isotherms, (b) pore size distribution for **BDP-POP-1** synthesized in CHCl₃, (c) pore size distribution for **BDP-POP-1** synthesized in CH₂ClCH₂Cl calculated by NLDFT measured at 77 K.

10. Singlet oxygen generation comparasion of BDP-POP-1 synthesized in CHCl₃ and CH₂ClCH₂Cl.

Fig S9. Time dependent absorption spectra of DPBF in dimethylformamide (DMF) upon irradiation with a low power green LED lamp: (a) **BDP-POP-1** synthesized in CH₂ClCH₂Cl, (b) **BDP-POP-1** synthesized in CH₃Cl. Test conditions: DPBF (4×10^{-5} M) in DMF (2.5 mL) solution with BDP-POP (0.1 mg), respectively.

Fig S10. Decay kinetics of DPBF with BDP-POP-1 synthesized in (a) CH₂ClCH₂Cl, (b) CH₃Cl.

11. ¹H NMR and Mass spectra of dimeric BODIPY monomers

Fig S11. ¹H NMR spectrum of BDP-0.

