Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Information

New Types of Cu and Ag Clusters Supported by the Pyrrole-based NNN-Pincer Type Ligand

Oishi Jana and Ganesan Mani*

Department of Chemistry, Indian Institute of Technology - Kharagpur, Kharagpur, West Bengal,

India 721 302, Fax: +91 3222 282252, E-mail: gmani@chem.iitkgp.ernet.in.

Contents

¹H, ¹³C, ¹⁹F NMR, FTIR, and UV spectra

Figure S1. ¹H NMR(200 MHz, 25 °C) spectrum of $[Cu(\mu-Cl)(\mu-C_4H_3N-2,5-(CH_2Me_2pz)_2 - N,N,N)]_2$, **1a** in CDCl₃.

Figure S2. IR spectrum of $[Cu(\mu-Cl)(\mu-C_4H_3N-2,5-(CH_2Me_2pz)_2-N,N,N)]_2$, 1a recorded as KBr disc.

Figure S3. ¹H NMR (200 MHz, 25 °C) specturm of $[Cu(\mu-Br)(\mu-C_4H_3N-2,5-(CH_2Me_2pz)_2 - N,N,N]$, **1b** in CDCl₃.

Figure S4. IR spectrum of $[Cu(\mu-Br)(\mu-C_4H_3N-2,5-(CH_2Me_2pz)_2-N,N,N)]_2$, **1b** recorded as KBr disc.

Figure S5. ¹H NMR (200 MHz, 25 °C) spectrum of $[Cu(\mu-I)(\mu-C_4H_3N-2,5-(CH_2Me_2pz)_2 - N,N,N)]_2$, **1c** in CDCl₃.

Figure S6. IR spectrum of $[Cu(\mu-I)(\mu-C_4H_3N-2,5-(CH_2Me_2pz)_2-N,N,N)]_2$, **1c** recorded as KBr. disc.

Figure S7. IR spectrum of [Cu₄(μ-I)₂(μ-C₄H₂N-2,5-(CH₂Me₂pz)₂–*N*,*N*,*N*)₂], **2** recorded as KBr disc. The band around 3500 cm⁻¹ is due to the presence of water in KBr used.

Figure S8. IR spectrum of $[Cu_4(\mu-I)_2(\mu-C_4H_2N-2,5-(CH_2Me_2pz)_2-N,N,N)_2]$, 2 recorded as a Nujol mull.

Figure S9. IR spectrum of $[Cu{\mu-C_4H_2N-2,5-(CH_2Me_2pz)_2-N,N,N}]$, **3** recorded as KBr disc. The band around 3400 cm⁻¹ is due to the presence of water in KBr used.

Figure S10. IR spectrum of $[Cu{\mu-C_4H_2N-2,5-(CH_2Me_2pz)_2-N,N,N}]$, 3 recorded as a Nujol mull.

Figure S11. ¹H NMR (400 MHz, 25 °C) spectrum of [Ag(μ-C₄H₃N-2,5-(CH₂Me₂pz)₂-*N*,*N*,*N*)(CF₃SO₃)]_n, **4a** in CDCl₃.

Figure S12. ¹⁹F NMR (376.3 MHz, 25 °C) spectrum of [Ag(μ-C₄H₃N-2,5-(CH₂Me₂pz)₂-*N*,*N*,*N*)(CF₃SO₃)]_n, **4a** in CDCl₃.

Figure S13. IR spectrum of [Ag(μ -C₄H₃N-2,5-(CH₂Me₂pz)₂–*N*,*N*,*N*)(CF₃SO₃)]_n, **4a** recorded as KBr disc.

Figure S14. ¹H NMR (200 MHz, 25 °C) spectrum of $[Ag(\mu-C_4H_3N-2,5-(CH_2Me_2pz)_2 - N,N,N)(BF_4)]_n$, **4b** in CD₃CN.

Figure S16. ¹⁹F NMR (376.3 MHz, 25 °C) spectrum of $[Ag(\mu-C_4H_3N-2,5-(CH_2Me_2pz)_2-N,N,N)(BF_4)]_n$, **4b** in CD₃CN.

Figure S17. IR spectrum of $[Ag(\mu-C_4H_3N-2,5-(CH_2Me_2pz)_2-N,N,N)(BF_4)]_n$, **4b** recorded as KBr disc.

Figure S18. ¹H NMR (200 MHz, 25 °C) spectrum of $[Ag\{(\mu-C_4H_2N-2,5-(CH_2Me_2pz)_2)-N,N,N\}]_3$, **5** in CD₃CN.

Figure S19. ¹³C NMR (153.9 MHz, 25 °C) spectrum of $[Ag\{(\mu-C_4H_2N-2,5-(CH_2Me_2pz)_2)-N,N,N\}]_3$, **5** in CD₃CN.

Figure S20. IR spectrum of [Ag{(μ-C₄H₂N-2,5-(CH₂Me₂pz)₂)–*N*,*N*,*N*}]₃, **5** recorded as KBr disc. The band around 3400 cm⁻¹ is due to the presence of water in KBr used.

 $\label{eq:Figure S21. IR spectrum of [Ag {(μ-C_4H_2N-2,5-(CH_2Me_2$pz]_2$)-$N,N,N}]_3, \mbox{\bf 5 recorded as a Nujol mull.}$

X-ray structures

Figure S22. ORTEP diagram of complex **1c** with 50% probability ellipsoids; most H atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): N13–Cu11 2.051(11), N14–Cu12 2.027(10), Cu11–I10 2.7063(17), Cu12–I10 2.7205(17); Cu12–I10–Cu11 85.29(6), N13'–Cu11–N13 109.5(6), I10'–Cu12–I10 94.39(7), N13–Cu11–I10 102.0(3). Symmetry transformations used to generate equivalent atoms: (i) 1–y,1–x, 3/2–z; (ii) –y, –x, 3/2–z.

Figure S23. UV-vis spectrum of the tetranuclear copper(I) complex $[Cu_4(\mu-I)_2(\mu-C_4H_2N-2,5-(CH_2Me_2pz)_2-N,N,N)_2]$ **2** with concentration of 10⁻⁵ M solution in CH₃CN. 0.0003 g of this complex dissolved in 25 mL of CH₃CN and then UV recorded within 1 hr. The color of the solution appeared almost colorless.

Figure S24. UV-vis spectrum of the NNN pincer ligand, 2,5-Bis(3,5-dimethylpyrazolylmethyl)pyrrole LH, with concentration of 10^{-4} M solution in CH₃CN.