Direct C–C coupling of acetone at α-position into 2,5-hexanedione

induced by photochemical oxidation dehydrogenation

Haozhen Liu,^{ab†} Zhijian Wang,^{b†} Hongxia Zhang,^c Li Li,^b Li Na,^b Minghong Wu,^{*a} Jiazang Chen,^{*b} Zhenping Zhu^b

^a School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China. E-mail: mhwu@shu.edu.cn

^b State Kay Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan, 03001 P.R.China. E-mail: chenjiazang@sxicc.ac.cn

^c Institute of Application Chemistry, Shanxi University, Taiyuan, 030006 (China).

[†] These authors contributed equally.

Fig.S1 The GC spectrum for the system(the concentration of H_2O_2 is 0.88 mol/L; the reaction time is 8h; 300W high pressure Hg lamp; the volume is 230mL)

Fig.S2 (a) the mass spectrum of product in the system and (b) the standard mass spectrum of HDN.

Fig.S3 (a) the mass spectrum of product in the system and (b) the standard mass spectrum of HAc.

Fig.S4 (a) the mass spectrum of product in the system and (b) the standard mass spectrum CH₃COCH₂CH₃

Fig.S5 (a) the mass spectrum of product in the system and (b) the standard mass spectrum of CH₃COCH₂COCH₃

Fig.S6 Experimental EPR spectrums of the CH_3COCH_3 -DMPO (a) and H_2O_2 -DMPO (b) system after 7 min illumination.

c(H ₂ O ₂) (mol/L)	Selectivity (%)									
	HDN	CH ₃ COOH	CH ₃ COCH ₂ CH ₃	CH ₃ COCH ₂ COCH ₃	CH_4	СО	CO ₂			
3.27	16.6	62.2	2.8	1.9	9.3	4.5	2.7			
2.23	34.8	45.1	4.1	3.1	7.6	3.4	1.9			
1.65	44.7	36.0	5.0	4.1	6.3	2.6	1.3			
1.31	49.1	32.1	5.7	4.7	5.4	2.1	0.9			
1.09	51.7	29.9	6.1	5.1	4.8	1.7	0.7			
0.87	52.9	28.6	6.6	5.7	4.3	1.4	0.5			

Table S1 Effect of initial concentration of H_2O_2 on the selectivity of products.

R(H ₂ O ₂)	Selectivity(%)									
(mmol/h)	HDN	CH ₃ COOH	CH ₃ COCH ₂ CH ₃	CH ₃ COCH ₂ COCH ₃	CH ₄	СО	CO ₂			
16	73.1	7.4	8.3	8.4	1.9	0.8	0.1			
24	70.2	10.4	8.3	8.2	2.0	0.8	0.1			
32	67.4	13	8.1	8.2	2.1	1	0.2			
40	64.9	15.4	8.0	8.1	2.3	1.1	0.2			
48	62.5	18	7.8	7.8	2.5	1.2	0.2			
64	59	21.8	7.4	7.5	2.7	1.3	0.3			

Table S2 Effect of the feed rate (instantaneous concentration) of H_2O_2 after 3 h on the selectivity of products.

Analysis method of selectivity:

HDN Selectivity

 $= \frac{6 * n(HDN)}{6 * n(HDN) + 2 * n(CH3C00H) + 4 * n(CH3C0CH2CH3) + 5 * n(CH3C0CH2C0CH3) + n(CO)} - \frac{6 * n(HDN)}{6 + n(HDN)} + \frac{6 * n(HDN)}$