Supporting Information

Table of Contents

Synthetic procedures and Characterization Data S2

The DSC curves for compounds 3a-5 S3-S9

¹ H and ¹³ C spectra of compounds S10–S18

X-ray Analysis S19–S31

Computation details S32–S33

References S34

Experimental Section

Caution: Proper safety precautions should be taken when handling these compounds. Laboratories and personnel should be properly grounded, and safety equipment such as Kevlar gloves, leather coats, faceshields, and ear plugs are recommended

General methods: All chemical reagents and solvents (analytical grade) were used as supplied unless otherwise stated. ¹H and ¹³C NMR spectra were measured with a Bruker Avance III 300 MHz Digital NMR Spectrometer operating at 300 MHz, 75 MHz or 500M, 100Hz). All chemical shifts are quoted in ppm relative to TMS (¹H, ¹³C). The decomposition point was recorded on a DSC823e at a heating rate of 5°C·min⁻¹ in closed Al containers with a nitrogen flow of 30 mL·min-1. Sensitivity data were determined using a BAM drop- hammer and a BAM friction tester. The electrostatic sensitivity test was carried out using an Electric Spark Tester ESD JGY-50 III.

The DSC curves for compounds 3a-5

Figure 2 The DSC curves for compound 3b

C

Figure 5 The DSC curves for compound 4b

ω

Figure 6 The DSC curves for compound 4c

Figure 7: The DSC curves for compound 5

Figure 15 ¹³CNMR spectrum of 4a (DMSO).

Figure 17 ³C NMR spectrum of 4b (DMSO)

Figure 21 ¹³C NMR spectrum of 5 (DMSO)

Figure 22 ¹HNMR spectrum of 5 (DMSO)

X-ray Structural Analysis of compound 4a

The selected crystal was mounted with epoxy to the tip of a glass rod drawn out to a fiber. The X-ray intensity data for this colorless needle of C₂₄ H₈ N₈ O₂₀ with approximate dimensions 0.23 x 0.14 x 0.14 mm were measured with phi and omega scans at 173 K on a Bruker SMART APEX CCD-based X-ray diffract meter system equipped with a Mo-target X-ray tube (= 0.71073 Å). The detector was placed at a distance of 5.00 cm from the crystal. A total of 5059 frames were collected (a hemisphere of data) with an exposure time package using a narrow-frame integration algorithm giving a total of 4399 reflections to a maximum (angle of 25.360° of which 3147 reflections were independent. The structure was solved (direct methods) and refined using the Bruker SHELXTL version 6.1 Software Package using literature scattering factors (Wilson, A. J. C., Ed. International Tables for Crystallography; Academic Publishers: Dordrecht. Kluwer The Netherlands, 1992; Vol. C.), and the orthorhombic space group Cc with Z = 4. No absorption correction was applied. The final anisotropic full-matrix leastsquares refinement of F2 converged at R1 =6.21%, wR2 = 14.16% and a goodness-of-fit of 1.060. All nonatoms modeled hydrogen were anisotropically. Hydrogen atoms were placed at calculated distances. All hydrogen atoms use a riding model, which means that the positional and thermal parameters are derived from the atom each hydrogen atom is bound to, while maintaining the calculated or determined distance and

optimal angles. The calculated density is 1.753g/cm³. Thermal ellipsoid drawings (15%) in this report were generated with the Bruker SHELXTL software.

Figure 23. (a) Dimer and (b) packing structures of compound 4a.

 $Table \ S4 \ \text{Selected geometric informations}$

Atoms 1,2	d 1,2 [Å] Atoms 1,2		d 1,2 [Å]
C1A-O1A	1.369(7)	C5C—C6C	1.378(8)
C1A—C2A	1.387(8)	C5C—H5C	0.9500
C1A—C6A	1.401(8)	C6C—N2C	1.473(7)
C2A—C3A	1.382(8)	C1D-01D	1.359(7)
C2A—H2A	0.9500	C1D—C6D	1.382(8)
C3A—O1D	1.368(7)	C1D-C2D	1.392(8)
C3A—C4A	1.399(8)	C2D—C3D	1.388(8)
C4A—C5A	1.381(8)	C2D—H2D	0.9500
C4A—N1A	1.466(8)	C3D—C4D	1.382(8)
C5A—C6A	1.368(8)	C3D-01C	1.392(7)
С5А—Н5А	0.9500	C4D—C5D	1.369(8)
C6A—N2A	1.463(7)	C4D—N1D	1.474(8)
C1B-01B	1.366(7)	C5D—C6D	1.381(8)
C1B—C2B	1.392(9)	C5D—H5D	0.9500
C1B—C6B	1.402(8)	C6D—N2D	1.464(8)
C2B—C3B	1.374(8)	N1A—O3A	1.213(7)
C2B—H2B	0.9500	N1A—O2A	1.221(7)
C3B—C4B	1.382(8)	N2A—O5A	1.227(7)
C3B-01A	1.389(7)	N2A—O4A	1.228(7)
C4B—C5B	1.383(9)	N1B-O3B	1.215(7)
C4B—N1B	1.458(8)	N1B-O2B	1.228(7)
C5B—C6B	1.374(8)	N2B—O4B	1.209(7)
C5B—H5B	0.9500	N2B05B	1.231(7)
C6B—N2B	1.470(8)	N2C-05C	1.215(7)
C1C-01C	1.373(7)	N2C-04C	1.222(7)
C1C-C2C	1.374(8)	N1D—O3D	1.213(7)
C1C—C6C	1.391(8)	N1D—O2D	1.232(7)
C2C-C3C	1.379(8)	N2D-O4D	1.220(7)
C2C—H2C	0.9500	N2D-05D	1.229(7)

C4C-N1X	1.483(15)		
C4C-N1C	1.477(10)	N1X-O2X	1.232(14)
C4C—C5C	1.391(8)	N1X—O3X	1.226(14)
C3C-01B	1.387(6)	N1C-02C	1.236(11)
C3C-C4C	1.371(8)	N1C-03C	1.219(11)

Atoms 1,2,3	Angle 1,2,3 [°] Atoms 1,2,3		Angle 1,2,3 [°]
01A-C1A-C2A	122.7(5)	C4C-C5C-H5C	120.800
01A—C1A—C6A	118.0(5)	C5C-C6C-C1C	121.1(5)
C2A—C1A—C6A	119.2(5)	C5C-C6C-N2C	117.3(5)
C3A—C2A—C1A	119.6(6)	C1C-C6C-N2C	121.6(5)
C3A—C2A—H2A	120.200	O1D-C1D-C6D	116.3(5)
C1A—C2A—H2A	120.200	O1D-C1D-C2D	124.2(5)
O1D-C3A-C2A	123.5(6)	C6D-C1D-C2D	119.4(5)
O1D-C3A-C4A	116.3(5)	C3D-C2D-C1D	119.3(6)
C2A—C3A—C4A	119.8(5)	C3D-C2D-H2D	120.300
C5A—C4A—C3A	120.8(5)	C1D-C2D-H2D	120.300
C5A—C4A—N1A	118.1(6)	C4D-C3D-C2D	120.1(6)
C3A—C4A—N1A	121.1(5)	C4D-C3D-01C	119.1(6)
C6A—C5A—C4A	118.8(6)	C2D-C3D-01C	120.6(5)
C6A—C5A—H5A	120.600	C5D-C4D-C3D	120.7(6)
C4A—C5A—H5A	120.600	C5D-C4D-N1D	115.3(6)
C5A—C6A—C1A	121.5(6)	C3D-C4D-N1D	124.0(6)
C5A—C6A—N2A	118.9(6)	C4D-C5D-C6D	119.3(6)
C1A—C6A—N2A	119.6(5)	C4D-C5D-H5D	120.400
01B-C1B-C2B	122.6(5)	C6D-C5D-H5D	120.400
O1B—C1B—C6B	118.3(5)	C5D-C6D-C1D	121.0(6)
C2B-C1B-C6B	119.2(5)	C5D—C6D—N2D	116.6(5)
C3B-C2B-C1B	119.6(5)	C1D-C6D-N2D	122.4(6)

C3B—C2B—H2B	120.200	03A—N1A—02A	124.2(6)
C1B-C2B-H2B	120.200	O3A—N1A—C4A	117.6(5)
C2B-C3B-C4B	121.0(6)	O2A-N1A-C4A	118.1(6)
C2B-C3B-01A	116.9(5)	05A—N2A—04A	124.8(5)
C4B-C3B-01A	122.0(5)	O5A—N2A—C6A	117.6(5)
C3B—C4B—C5B	119.9(6)	O4A—N2A—C6A	117.5(6)
C3B—C4B—N1B	121.9(6)	O3B-N1B-O2B	124.0(6)
C5B-C4B-N1B	118.2(5)	O3B-N1B-C4B	117.8(6)
C6B-C5B-C4B	119.9(5)	O2B-N1B-C4B	118.2(5)
C6B—C5B—H5B	120.000	O4B-N2B-O5B	125.4(6)
C4B—C5B—H5B	120.000	O4B-N2B-C6B	117.5(6)
C5B-C6B-C1B	120.4(6)	O5B—N2B—C6B	117.2(5)
C5B-C6B-N2B	118.6(5)	05C-N2C-04C	126.1(6)
C1B-C6B-N2B	121.0(5)	05C-N2C-C6C	117.0(6)
01C-C1C-C2C	122.9(5)	04C-N2C-C6C	117.0(6)
01C-C1C-C6C	117.5(5)	03D-N1D-02D	124.9(6)
C2C-C1C-C6C	119.5(5)	O3D-N1D-C4D	116.7(6)
C1C-C2C-C3C	119.9(5)	O2D-N1D-C4D	118.4(6)
C1C-C2C-H2C	120.000	04D-N2D-05D	123.2(6)
C3C-C2C-H2C	120.000	O4D-N2D-C6D	118.3(6)
C4C-C3C-C2C	120.4(5)	O5D-N2D-C6D	118.4(5)
C4C-C3C-01B	120.7(5)	C1A-01A-C3B	118.4(4)
C2C-C3C-01B	118.8(5)	C1B-01B-C3C	115.4(4)
C3C-C4C-C5C	120.7(5)	C1C-01C-C3D	120.2(4)
C3C-C4C-N1C	120.4(6)	C1D-01D-C3A	126.2(5)
C5C-C4C-N1C	118.8(6)	03C-N1C-02C	123.9(11)
C3C-C4C-N1X	124.8(8)	O3C-N1C-C4C	118.4(9)
C5C-C4C-N1X	113.8(8)	O2C-N1C-C4C	117.7(8)
N1C-C4C-N1X	13.7(14)	O3X-N1X-O2X	124.4(17)
C6C-C5C-C4C	118.4(5)	O3X-N1X-C4C	117.8(14)

-

[i] x,y,1+z; [ii] 1/2-x,y,-1/2+z; [iii] 1-x,1/2-y,-1/2+z; [iv] 3/2-x,y,1/2+z

X-ray Structural Analysis of compound 4b

The selected crystal was mounted with epoxy to the tip of a glass rod drawn out to a fiber. The X-ray intensity data for this colorless needle of $C_{26}H_{12}N_8O_{20}$ with approximate dimensions 0.13 x 0.23 x 0.24 mm were measured with phi and omega scans at 173 K on a Bruker SMART APEX CCD-based X-ray diffract meter system equipped with a Mo-target X-ray tube (= 0.71073 Å). The detector was placed at a distance of 5.00 cm from the crystal. A total of 15169 frames were collected (a hemisphere of data) with an time package using a narrow-frame exposure integration algorithm giving a total of 15887 reflections to a maximum (angle of 25.387° of which 8131 reflections were independent. The structure was solved (direct methods) and refined using the Bruker SHELXTL version 6.1 Software Package using literature scattering factors (Wilson, A. J. C., Ed. for Crystallography; Kluwer International Tables Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. C.), and the orthorhombic space group Cc with Z = 4. No absorption correction was applied. The final anisotropic full-matrix least-squares refinement of F2 converged at R1 = 5.80%, wR2 = 14.29% and a goodness-of-fit of 1.068. All non-hydrogen atoms were modeled anisotropically. Hydrogen atoms were placed at calculated distances. All hydrogen atoms use a riding model, which means that the positional and thermal parameters are derived from the atom each hydrogen atom is bound to, while maintaining the

calculated or determined distance and optimal angles. The calculated density is 1.759g/cm³. Thermal ellipsoid drawings (15%) in this report were generated with the Bruker SHELXTL software.

Figure S24. (a) Dimer structures of compound 4b • 2CH₃CO₂Et

Atomic parameters							
Atom	Ox.	Wyck.	Site	x/a	y/b	z/c	
C1A		2i	1	0.79089	0.08054	0.03172	
C2A		2i	1	0.72019	0.12612	0.06083	
C3A		2i	1	0.60665	0.12843	0.02638	
C4A		2i	1	0.56257	0.08517	-0.03478	
C5A		2i	1	0.63145	0.03740	-0.06433	
C6A		2i	1	0.74589	0.03737	-0.02894	
C7A		2i	1	0.56590	0.24004	0.07020	
C8A		2i	1	0.64762	0.27296	0.03844	
C9A		2i	1	0.67952	0.34407	0.05583	
C10A		2i	1	0.62767	0.38222	0.10401	
C11A		2i	1	0.54392	0.35151	0.13547	
C12A		2i	1	0.51387	0.27851	0.11841	
C13A		2i	1	0.58547	-0.01115	-0.13065	
C1B		2i	1	0.87277	0.36526	0.02583	
C2B		2i	1	0.93026	0.33666	0.07709	
C3B		2i	1	1.04985	0.32770	0.07774	
C4B		2i	1	1.11113	0.34849	0.02915	
C5B		2i	1	1.05745	0.37761	-0.02311	
C6B		2i	1	0.93599	0.38465	-0.02286	
C7B		2i	1	1.07425	0.24062	0.14278	
C8B		2i	1	1.00352	0.18899	0.09446	
C9B		2i	1	0.96812	0.12551	0.11078	
C10B		2i	1	1.00489	0.11148	0.17398	

C11B	2i	1	1.08071	0.16070	0.22188
C12B	2i	1	1.11176	0.22545	0.20632
C13B	2i	1	1.12187	0.39818	-0.07670
C1C	2i	1	0.49448	0.42184	0.62714
C2C	2i	1	0.56036	0.37296	0.59884
C3C	2i	1	0.67247	0.36777	0.63409
C4C	2i	1	0.71829	0.41033	0.69477
C5C	2i	1	0.65527	0.46137	0.72277
C6C	2i	1	0.54168	0.46476	0.68646
C7C	2i	1	0.71145	0.25549	0.58397
C8C	2i	1	0.62734	0.22012	0.61311
C9C	2i	1	0.60045	0.14865	0.59367
C10C	2i	1	0.66036	0.11230	0.54610
C11C	2i	1	0.74287	0.14837	0.51710
C12C	2i	1	0.76750	0.22008	0.53515
C13C	2i	1	0.69976	0.51006	0.78927
C1D	2i	1	0.40691	0.13488	0.62250
C2D	2i	1	0.35125	0.16437	0.57040
C3D	2i	1	0.23575	0.18124	0.57390
C4D	2i	1	0.17626	0.16816	0.62497
C5D	2i	1	0.23075	0.13737	0.67738
C6D	2i	1	0.34620	0.12172	0.67328
C7D	2i	1	0.21224	0.27119	0.51012
C8D	2i	1	0 28317	0 31980	0 55907
C9D	2i	1	0 31791	0 38575	0 54564
C10D	2i	1	0.28098	0 40238	0 48343
C11D	2i 2i	1	0.20050	0.35406	0.43444
C12D	21	1	0.17230	0.28887	0.44846
C13D	2i 2i	1	0.17230	0 12714	0.73702
N1A	21	1	0.10507	0.09267	-0.06929
N2A	2i 2i	1	0.82659	-0 00977	-0.05750
NZA	21	1	0.62039	0.00977	0.03730
	21	1	0.00397	0.45057	0.12445
	21	1	1 24057	0.24602	0.13397
	21	1	1.24057	0.33964	0.03410
	21	1	0.86952	0.41510	-0.07576
N3B	21	1	0.96622	0.04563	0.19389
N4B	21	1	1.18367	0.27880	0.25991
NIC	21	1	0.83620	0.39843	0.72981
N2C	21	1	0.46955	0.51823	0./121/
N3C	21	1	0.64200	0.03802	0.52/13
N4C	21	1	0.85129	0.25481	0.50040
N1D	21	1	0.05446	0.18922	0.62549
N2D	2i	1	0.40922	0.09011	0.72599
N3D	2i	1	0.31644	0.46994	0.46590
N4D	2i	1	0.09672	0.23864	0.39372
01A	2i	1	0.52814	0.16964	0.05412
02A	2i	1	0.75488	0.37910	0.02079
03A	2i	1	0.42766	0.14911	-0.08378
04A	2i	1	0.36564	0.04207	-0.08040
05A	2i	1	0.81474	-0.06934	-0.04911
06A	2i	1	0.89805	0.01394	-0.08967
07A	2i	1	0.58829	0.49550	0.12778
08A	2i	1	0.77374	0.47593	0.13872
09A	2i	1	0.36226	0.28701	0.18050
010A	2i	1	0.42329	0.18818	0.15862
01B	2i	1	1.11561	0.30340	0.12967
O2B	2i	1	0.90573	0.07253	0.06097
O3B	2i	1	1.26625	0.27988	0.02808
O4B	2i	1	1.31448	0.39064	0.04433
O5B	2i	1	0.80151	0.37638	-0.12062
O6B	2i	1	0.88569	0.47711	-0.07252
07B	2i	1	1.03712	0.02310	0.23406
O8B	2i	1	0.86284	0.01788	0.17050
09B	2i	1	1.25597	0.25765	0.30057
O10B	2i	1	1.16566	0.33885	0.26212
01C	2i	1	0.74894	0.32598	0.60490
-					

02C	2i	1	0.51999	0.11207	0.62329
03C	2i	1	0.84748	0.33854	0.73815
04C	2i	1	0.91348	0.44932	0.74840
05C	2i	1	0.50684	0.57910	0.71464
06C	2i	1	0.37409	0.49900	0.72915
07C	2i	1	0.62563	0.00255	0.56880
08C	2i	1	0.64744	0.01342	0.46865
09C	2i	1	0.92164	0.22074	0.47514
010C	2i	1	0.84657	0.31461	0.49616
01D	2i	1	0.17331	0.20623	0.52094
02D	2i	1	0 38508	0 43538	0 59566
03D	2i	1	0.04058	0 24942	0 62058
04D	2i	1	-0 02664	0 14492	0 62962
050	2i 2i	1	0.49060	0 12618	0.76563
060	2i 2i	1	0.37706	0.02971	0 72798
070	21	1	0.20024	0.02571	0./1103
	21	1	0.25024	0.51511	0.50715
000	21	1	0.30471	0.17741	0.30713
090	21	1	0.11001	0.17741	0.30013
	21	1	0.02523	0.26278	0.35455
CI4A	21	1	0.55504	0.31844	0.39448
CISA	21	1	0.50109	0.25309	0.41310
OTTA	21	1	0.48298	0.20066	0.36225
C16A	21	1	0.4182/	0.13528	0.3/199
C17A	2i	1	0.39145	0.08902	0.30361
012A	2i	1	0.47292	0.24797	0.46605
C14D	2i	1	0.19075	0.37439	0.74026
C15D	2i	1	0.29223	0.33143	0.75471
011D	2i	1	0.30405	0.31946	0.81666
C16D	2i	1	0.40466	0.28467	0.84139
C17D	2i	1	0.51310	0.33845	0.86741
012D	2i	1	0.35721	0.30874	0.71657
C14W	2i	1	0.18151	0.35604	0.74099
C15W	2i	1	0.30541	0.33416	0.75129
O11W	2i	1	0.34835	0.33777	0.81579
C16W	2i	1	0.47094	0.32015	0.83236
C17W	2i	1	0.49687	0.32682	0.90719
012W	2i	1	0.36643	0.31589	0.70916
C14B	2i	1	1.10138	0.15910	0.91917
C15B	2i	1	0.97171	0.17076	0.90193
011B	2i	1	0 93459	0 15834	0.83766
C16B	2i	1	0.80805	0 17163	0 81547
C17B	2i	1	0 78128	0 13453	0 74353
012B	2i 2i	1	0 90462	0 19112	0 94147
C14V	21	1	1 10289	0.13693	0.91709
C15V	21	1	1.10209	0.17063	0.91709
0117	21	1	0.00071	0.17905	0.90009
CIEV	21	1	0.99071	0.18795	0.03743
	21	1	0.07191	0.20421	0.00000
	21	1	0.78538	0.13821	0.81023
0121	21	1	0.93920	0.20579	0.93812
C14C	21	1	0.82808	0.36131	0.27582
C15C	21	1	0./95/6	0.28434	0.24298
011C	21	1	0.75612	0.24/06	0.28534
C16C	2i	1	0.72474	0.17240	0.26178
C17C	2i	1	0.75633	0.13670	0.32081
012C	2i	1	0.80614	0.26071	0.18738
C14X	2i	1	0.83871	0.36112	0.27227
C15X	2i	1	0.78788	0.28725	0.23893
011X	2i	1	0.70978	0.25969	0.27246
C16X	2i	1	0.65932	0.18706	0.24941
C17X	2i	1	0.75314	0.14437	0.27929
012X	2i	1	0.81301	0.25622	0.18836

Anisotropic	displacement	parameters, in Ų

Atom	U 11	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃			
C1A	0.03113	0.03017	0.02475	0.00655	0.00302	0.00637			
C2A	0.03330	0.02946	0.02979	0.00317	0.00987	0.00264			

C2A	0 02225	0 0000	0.02715	0.00102	0 00012	0 00250
CJA	0.03223	0.02363	0.03/13	0.00103	0.00013	0.00350
C4A	0.03090	0.02480	0.04074	0.00328	0.00307	0.00755
C5A	0.03454	0.02566	0.02/03	0.00306	0.00488	0.00286
C6A	0.03424	0.03093	0.02371	0.00934	0.00526	0.00260
C7A	0.02744	0.02796	0.03533	0.00763	0.00736	0.00135
C8A	0.03088	0.03702	0.03767	0.01287	0.00901	0.00787
	0 02733	0.03/11	0 03882	0.00692	0 00077	0.01305
CJA C104	0.02733	0.03411	0.03002	0.00092	0.009/7	0.01303
CIUA	0.03476	0.02902	0.04421	0.00729	0.00846	0.00708
CIIA	0.03438	0.03397	0.04155	0.005/1	0.00813	0.00483
C12A	0.02207	0.03912	0.03879	0.01024	0.00788	0.00860
C13A	0.04592	0.04407	0.02883	0.00518	-0.01067	-0.00824
C1B	0.03448	0.03211	0.02895	0.00131	0.00982	0.00849
C2B	0 03438	0 03849	0.03170	0.00537	0 01144	0.01302
C3B	0.03504	0.03015	0.02018	0.00130	0.00111	0.00827
CAB	0.03394	0.02010	0.02910	0.00139	0.00414	0.00827
C4D	0.02691	0.04200	0.03096	0.00657	0.01236	0.01047
C5B	0.03950	0.04/9/	0.02898	0.00278	0.00902	0.01468
C6B	0.03897	0.04113	0.02266	0.00528	0.00530	0.01054
C7B	0.02518	0.03547	0.02822	0.00507	0.01003	0.00951
C8B	0.03597	0.04011	0.02378	0.01032	0.00542	0.00680
C9B	0.02768	0.02786	0.02629	0.00965	0.00516	-0.00506
C10B	0.02836	0 02594	0.02652	0.00646	0.00624	0.00632
C11D	0.02030	0.02334	0.02032	0.00040	0.00024	0.00032
	0.03076	0.03164	0.02035	0.00297	0.00073	0.00783
CI2B	0.03044	0.03570	0.019/3	0.00326	0.00414	0.00182
C13B	0.06032	0.10589	0.05589	0.01907	0.03292	0.04711
C1C	0.03577	0.02422	0.02653	-0.00130	0.00017	0.00780
C2C	0.03619	0.03237	0.03414	-0.00008	0.00909	0.00864
C3C	0.03601	0.03751	0.04453	0.00415	0.01522	0.01033
	0.03283	0.04104	0.04530	0.00486	0 00003	0.01597
	0.03203	0.07107	0.07597	0.00400	0.00095	0.01027
	0.04629	0.03340	0.03367	-0.00172	-0.00310	0.01027
660	0.04059	0.02474	0.03043	0.00300	0.00091	0.00583
C7C	0.03058	0.03889	0.04445	0.01300	0.00899	0.01138
C8C	0.04134	0.04032	0.04015	0.01482	0.01671	0.01331
C9C	0.04513	0.04013	0.05581	0.01287	0.01964	0.02427
C10C	0.04509	0.04484	0.06977	0.02046	0.02430	0.01091
C11C	0.04323	0.05739	0.05178	0.01671	0.01345	0.00420
C12C	0.07831	0.05605	0.00170	0.01476	0.01537	0.01/22
C12C	0.02031	0.05095	0.04105	0.01470	0.01337	0.01422
	0.08004	0.05518	0.03256	0.00027	-0.02076	0.00140
CID	0.04668	0.02/03	0.04605	0.00419	0.01926	0.01431
C2D	0.04954	0.02637	0.03928	0.00685	0.01783	0.01140
C3D	0.04098	0.02752	0.02571	-0.00239	0.00385	0.00548
C4D	0.03674	0.03266	0.02912	-0.00311	0.00500	0.00772
C5D	0.03669	0.04084	0.03162	-0.00324	0.00818	0.01163
C6D	0 04480	0 02843	0.03612	0.00235	0.00753	0.01302
C7D	0.03318	0.02545	0.02650	0.00233	0.00730	0.00522
CID	0.03310	0.02343	0.02039	0.00237	0.00750	0.00522
COD	0.03123	0.03077	0.02967	0.00391	0.00881	0.00620
C9D	0.03038	0.02556	0.02968	0.00738	0.00580	-0.00275
C10D	0.03261	0.02463	0.03230	-0.00005	0.00434	0.00922
C11D	0.03194	0.02822	0.03342	0.00170	0.00600	0.00446
C12D	0.03216	0.02990	0.02376	0.00271	0.00894	0.00189
C13D	0.05550	0.09311	0.04215	0.00736	0.02149	0.03701
N1A	0.03142	0.04200	0.04632	0.01005	0.00206	0.01010
	0.03142	0.04209	0.04032	0.01003	0.00200	0.01019
NZA	0.03699	0.03100	0.03066	0.01479	0.00073	-0.00170
N3A	0.06/29	0.03089	0.05297	0.00781	0.01510	0.00105
N4A	0.03639	0.03752	0.05030	0.00403	0.02096	0.00313
N1B	0.04387	0.05441	0.04592	0.00374	0.01007	0.01489
N2B	0.04554	0.05191	0.03548	0.00580	0.00769	0.02129
N3B	0.05100	0.03041	0.03727	0.00268	0.01225	-0.00014
N4B	0.03819	0.03381	0.02425	-0.00207	0.00905	0.00383
N1C	0 04715	0.08103	0.06580	0 02109	-0.01056	0 01594
NOC	0.07/10	0.00103	0.00000	0.02109	0.01050	0.0135
NZC	0.03233	0.03309	0.03203	0.00/09	0.00195	0.00120
N3C	0.09119	0.04/84	0.14/58	0.03027	0.06042	0.00907
N4C	0.05031	0.0/294	0.05535	0.01332	0.02620	0.01921
N1D	0.04182	0.05409	0.03757	0.00378	0.00663	0.01447
N2D	0.04407	0.05501	0.05162	0.00525	0.00830	0.02820
N3D	0.05799	0.03099	0.04066	-0.01181	-0.00550	0.01014
N4D	0.03416	0.03798	0.02340	-0.00668	0.00956	0.00389
		2.227.20		2.00000		

01A	0.03313	0.02848	0.05803	0.00398	0.01851	0.00156	
024	0 03736	0 04205	0.04134	0 00723	0.01476	0.01000	
024	0.05750	0.07295	0.04154	0.00725	0.01470	0.01900	
03A	0.05183	0.05572	0.09/5/	0.02181	-0.00333	0.03267	
04A	0.04026	0.05051	0.09468	-0.01006	-0.01581	0.01091	
05A	0.09173	0.03684	0.10632	0.03319	0.04204	0.01875	
064	0.07720	0.06224	0.07440	0.02040	0.04612	0.01622	
UGA	0.07730	0.00334	0.07440	0.03049	0.04613	0.01622	
0/A	0.10281	0.03620	0.11503	0.02218	0.00644	-0.001/4	
08A	0.07719	0.04571	0.08631	-0.01922	0.02502	0.00203	
094	0 05148	0 07121	0 07696	0.01094	0 04247	0 00728	
0104	0.00140	0.07121	0.07090	0.01034	0.04247	0.00720	
AULO	0.16861	0.04318	0.13/98	0.01046	0.11428	0.02214	
O1B	0.03959	0.03677	0.03574	-0.00161	-0.00059	0.01811	
02B	0.03539	0.03359	0.03039	0.01102	-0.00651	-0.00564	
020	0.05047	0.00146	0.09514	0.02406	0.00127	0.01100	
030	0.03047	0.00140	0.06514	0.02490	-0.00137	-0.01100	
04B	0.03874	0.08581	0.12594	-0.01202	0.00379	0.04//3	
05B	0.10806	0.07565	0.05672	0.00110	-0.03861	0.01548	
O6B	0 13376	0 05558	0.06961	0 01910	-0 02796	0 02881	
000	0.13370	0.03330	0.00501	0.01510	0.02750	0.02001	
078	0.07339	0.04/32	0.04622	0.00416	-0.00830	0.02399	
O8B	0.05640	0.04625	0.06050	-0.01636	0.00065	0.01193	
09B	0.03301	0.05307	0.02987	-0.00128	0.00083	0.01005	
0108	0.06206	0.02544	0.02260	0.00152	0.01101	0.00105	
0106	0.00390	0.03344	0.03209	-0.00133	0.01191	0.00193	
01C	0.031//	0.04210	0.0/233	0.00667	0.02109	0.00882	
02C	0.05003	0.04782	0.08229	0.01959	0.03379	0.03770	
030	0 07813	0 08128	0 09037	0 03875	-0 00839	0 02962	
0.10	0.07015	0.00120	0.00000	0.00070	0.00055	0.02502	
04C	0.05076	0.09486	0.12942	-0.00320	-0.02974	0.00353	
05C	0.09723	0.03246	0.06543	0.01089	0.01041	0.00266	
06C	0.08457	0.06408	0.09812	0.02040	0.04268	0.00261	
070	0 10066	0.05011	0 20650	0.06070	0 16029	0.08004	
070	0.10000	0.03011	0.30038	0.00070	0.10928	0.08004	
080	0.1/212	0.06910	0.16/43	0.02521	0.04959	-0.03565	
09C	0.06003	0.10671	0.06514	-0.00252	0.03944	-0.00256	
0100	0 17229	0 10686	0 23281	0.06902	0 16355	0 10526	
0100	0.1/225	0.00144	0.20201	0.00751	0.00103	0.01207	
OID	0.04567	0.03144	0.02827	-0.00751	-0.00193	0.01307	
02D	0.04130	0.02376	0.03931	0.00285	-0.00449	-0.00176	
03D	0.05691	0.04699	0.06267	0.01714	0.00772	0.00158	
04D	0.03361	0.08615	0 13093	-0.00912	0.01068	0 05670	
	0.00000	0.00015	0.13035	0.000012	0.01000	0.03070	
050	0.08988	0.08398	0.07496	-0.00036	-0.03234	0.02664	
06D	0.10556	0.05466	0.10043	-0.00247	-0.00896	0.05080	
07D	0.14642	0.06026	0.05290	-0.04385	-0.01887	0.03303	
	0 43605	0 10266	0 10652	-0 16577	-0 12667	0.06598	
000	0.43093	0.10200	0.10052	-0.105//	-0.12007	0.00398	
09D	0.06657	0.02968	0.03253	-0.00084	0.00872	0.00606	
010D	0.03351	0.05059	0.03237	-0.00376	0.00213	0.00575	
C144	0 09969	0 04651	0.05823	-0.00665	0 03380	0 01402	
	0.03505	0.02700	0.02007	0.00603	0.01105	0.001102	
CIJA	0.04300	0.03700	0.03997	0.00003	0.01193	0.00338	
011A	0.06414	0.03/10	0.03/65	0.00260	0.015/3	0.00252	
C16A	0.08262	0.03678	0.05832	-0.01494	0.01886	-0.00556	
C174	0 07888	0 05886	0 06804	-0.00314	0 00905	-0.01736	
0124	0.07000	0.00000	0.00001	0.00010	0.00000	0.01/30	—
012A	0.07433	0.04922	0.03150	-0.00319	0.02066	0.00593	
C14D	0.05424	0.05703	0.05877	0.00070	-0.00774	0.00865	
C15D	0.07908	0.04561	0.03186	0.00472	-0.00048	0.00428	
0110	0.00800	0.05000	0.04010	0.02003	0.00036	0.01406	
OIID	0.09000	0.03990	0.04010	0.02093	0.00930	0.01400	
C16D	0.11055	0.0/182	0.05400	0.03126	-0.01272	0.02141	
C17D	0.11431	0.11330	0.08444	0.03444	-0.03528	0.00273	
012D	0.08220	0 06980	0 04499	0 02602	0 00467	0 00677	
	0.00220	0.00500	0.01155	0.02002	0,00086	0.00459	
	0.08080	0.05620	0.05545	0.01214	-0.00986	-0.00458	
C15W	0.08179	0.05053	0.03292	0.00394	-0.00081	0.00343	
011W	0.10786	0.07628	0.04941	0.01738	-0.01325	0.01264	
C16W	0 10929	0 08978	0 04717	0 03171	-0.01017	-0.00010	
C17W	0.10020	0.10017	0.04025	0.01(20	0.0101/	0.01602	
CI/W	0.12205	0.1091/	0.04925	0.01030	-0.02324	0.01008	
012W	0.08659	0.07960	0.03805	0.01517	0.00165	0.01616	
C14B	0.07940	0.06932	0.05302	0.01776	-0.00408	0.00150	
	0 06777	0 05061	0 03221			0.00301	
CIDD	0.00722	0.00001	0.00001	0.00307	0.00049	0.00391	
OTIR	0.06669	0.09803	0.03960	0.01136	-0.00461	0.014/2	
C16B	0.08329	0.12607	0.07344	-0.00021	0.01533	0.01064	
C17B	0.08571	0.19653	0.07358	0.00135	-0.00307	0.00797	
0120	0.00071	0 06565	0 04420	0 00240	0 00660	0.01024	
UIZD	0.000/0	0.00000	0.04438	0.00349	0.00009	0.01034	
C14C	0.09730	0.05695	0.07801	0.02115	-0.00144	-0.00344	
	0 00507	0 07400	0 05720	0.01520	0.01202	0.01200	

011C	0.07039	0.07258	0.05074	0.01223	0.01721	0.01112	
C10C	0.08490	0.05595	0.08476	0.00041	-0.01357	0.01155	
012C	0.07030	0.07257	0.02927	0.00840	0.02666	0.00181	

Computation details

Computations were carried out by using the Gaussian03 suite of programs. The elementary geometric optimization and the frequency analysis were performed at the level of Becke three Lee-Yan-Parr (B3LYP) Functionals ^{[1].} All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies.

The gas phase heat of formation (HOF) (Table S6) was determined by using the method of isodesmic reactions ^[3]. For the compounds reported here, the isodesmic reactions were carried out as Hakima Abou-Rachid did ^[4] The accuracy of the method was also proved by the HOF prediction, as shown in Table S6. According to the optimized structures, the total energy (E_0) and thermodynamic parameters, including zero point energy (ZPE) and thermal correction to enthalpy (HT), were obtained at the B3LYP/6-311+G** level ^[5] .298 K

Scheme1. Isodesmic reactions for compound 4a

 $A_aB_bC_c(g) \rightarrow aA(g)+bB(g)+cC(g)$

$$\Delta H_{298} = \sum \Delta_{\rm f} H_{\rm P} - \sum \Delta_{\rm f} H_{\rm R}$$
$$\Delta H_{298} = \Delta E_{298} + \Delta (PV) = \Delta E_0 + \Delta E_{\rm ZPE} + \Delta H_{\rm T} + \Delta nRT$$

Table 10 Table Theoretical total energies, zero-point vibrational energies, thermal corrections for enthalpies and heat of formation (HOF) for 8 and the reference compounds

compound	$E_0(a.u.)$	zero-point(KJ/mol)	HT(KJ/mol)	HOF(KJ/mol)
4a	-2861.52	885.36	114.22	613.58
CH4	-40.53	112.26	10.04	-74.6
CH3NO2	-245.09	124.93	11.6	-80.8

benzene	-232.31	252.53	14.44	82.93
CH₃OCH₃	-155.07	199.82	14.05	-184.1

In addition, Detonation velocity (D) and detonation pressure (P) were evaluated by the empirical Kamlet formula as

 $P = 1.558 \rho^2 \Phi$ (1)

D = 1.01 \oplus ^{1/2} (1+1.30 ρ_0) (2)

 $\Phi = 0.4889 \text{ N (MQ)}^{\frac{1}{2}}$ (3)

Where D is the predicted detonation velocity (km/s) and P is the detonation pressure (GPa), ρ is the density of a compound (cm³/mol). Φ , N, M and Q are characteristic parameters of an explosive, Q is chemical energy of detonation (kJ/g). The crystal densities and the calculated heats of formation were used in computing the D and P values

Table 11 heoretical total energies, zero-point vibrational energies, thermal corrections for enthalpies and heat of formation 6-8

Compound	$E_0(a.u.)$	ZPE (kJ·mol ⁻¹)	$\Delta H_{\mathrm{T}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$	HOF (kJ·mol ⁻¹)
4a	-2861.52	885.36	114.22	613.58
4b	-2940.32	1028.68	126.15	404.46
5	-2972.44	976.67	122.82	287.85

Reference

1 a) A. D. Becke. *J. Phys. Chem.* 1993, 98, 5648-5652; b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, ; M. J.Frisch. *J. Phys. Chem.* 1994, 98, 11623-11627

2 P. C. Hariharan, J. A Pople. *Theoretica Chimica Acta*. 1973, 28, 213-222.

3 a) M. W.Schmidt, M. S. Gordon, J. A. Boatz. *J. Phys. Chem. A* 2005, 109, 7285-7295; b) H. Gao, C. Ye,; C. M. Piekarski, J.M. Shreeve. *J. Phys. Chem. C* 2007, 111, 10718-10731.

4 M. Jaidann., S. Roy; H. Abou-Rachid, L. S. Lussier, J. Hazard Mater. 2010, 176, 165-173.

5 J. A. Pople, J. S.Binkley, R.Seeger. Int. J. Quantum Chem. 1976, 10, 1-19.

6 a) X. J. Xu, H. M. Xiao, X. H. Ju, X. D. Gong, W. H. Zhu. *J. Phys. Chem. A* 2006, 110, 5929-5933; b) G. X. Wang, X. D. Gong, Y. Liu, H. Du. X. Xu, H. M. Xiao. *J. Hazard Mater*. 2010, 177, 703-710.