Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Synthesis, photophysical, electrochemical properties and DSSC application of triphenylamine chalcone

dendrimers via click chemistry

Devaraj Anandkumar,^a Perumal Rajakumar,^a* Shanmugam Ganesan^b and Pichai Maruthamuthu^c

^aDepartment of Organic Chemistry, University of Madras, Guindy Campus Chennai 600 025, TamilNadu, India ^bDepartment of Chemistry, SRM University, SRM Nagar, Kattankulathur, Chennai-603 203, India ^cDepartment of Energy, University of Madras, Guindy Campus, Chennai 600 025, India

E-mail: perumalrajakumar@gmail.com; Tel: +91 044 2220 2814

 $^1\mathrm{H}$ NMR (300 MHz, CDCl_3) of compound $\mathbf{10}$

¹H NMR (300 MHz, CDCl₃) of compound 15

¹³C NMR (75 MHz, CDCl₃) of compound 15

UNIV. OF MADRAS

¹³C NMR (75 MHz, CDCl₃) of compound 16

¹H NMR (300 MHz, CDCl₃) of compound 1

¹³C NMR (75 MHz, CDCl₃) of compound 1

¹H NMR (300 MHz, CDCl₃) of compound **2**

¹³C NMR (75 MHz, CDCl₃) of compound 2

¹H NMR (300 MHz, CDCl₃) of compound **3**

 ^{13}C NMR (75 MHz, CDCl₃) of compound $\boldsymbol{3}$

¹H NMR (300 MHz, CDCl₃) of compound 4

¹³C NMR (75 MHz, CDCl₃) of compound 4

¹H NMR (300 MHz, CDCl₃) of compound **6**

Figure 1 Absorption spectra of 1 and 2 recorded in selected solvents of different polarity.

Figure 2 Absorption spectra of 3 and 4 recorded in selected solvents of different polarity.

Compound	Solvent	$\lambda_{ab}^{max}(nm)$	$\epsilon_{max} (L M^{-1} cm^{-1} imes 10^6)$
1	DCM	421	0.3275
	THF	408	0.3788
	CHCl ₃	424	0.4022
	Dioxane	410	0.4060
	DMF	415	0.3304
2	DCM	406	0.2208
	THF	398	0.4054
	CHCl ₃	410	0.3636
	Dioxane	400	0.3787
	DMF	404	0.5463
3	DCM	416	0.4060
	THF	406	0.4103
	CHCl ₃	423	0.4132
	Dioxane	407	0.4419
	DMF	410	0.4538
	DCM	406	0.2919
	THF	399	0.4919
4	CHCl ₃	411	0.5282
	Dioxane	401	0.5599
	DMF	405	0.4706

 Table 1 Absorption data for compounds 1-4 recorded in different solvents.

Fig. 3 GPC diagrams of dendrimers 4 and 6 using THF eluent

S.No	Dendrimers	M _n (g mol ⁻¹)	M _w (g mol ⁻¹)	PDI
1	4	3540	3700	1.04
2	6	6380	6960	1.09

 Table 2 Molecular weight data of dendrimers 4 and 6

Fabrication of dye-sensitized solar cells (DSSC)

The dye-sensitized solar cell (DSSC) was fabricated on a conducting glass covered with fluorinated tin oxide (F: SnO₂) (FTO) and nanocrystalline TiO₂ coated by reported procedure by Srimanne et al. [P. M. Sirimanne, T. Shirata,T. Soga, J. Solid. State Chem. 166 (2002) 142]. The prepared TiO₂ electrodes were immersed in a 5 x 10⁻⁵ M solution of the photosensitizer such as, cisdithiocyanoto bis (2, 2'-bipyridyl- 4,4'-dicarboxylate)- ruthenium (II) (N3 dye) in ethanol for 24 h at room temperature and dried in air and it act as working electrode. The Pt coated conducting plate act as counter electrode. The synthesized triphenylamine chalcone dendrimer derivatives based electrolyte solution was injected into the space between two electrodes. The electrolyte solution was composed of KI is 0.15g; I₂ is 0.06g, synthesized organic dendrimers is 0.03g additives in 10ml DMF solvent. The active area of newly synthesized dendrimer doped electrolyte based dye-sensitized solar cells is 1 cm⁻². The solar cells activity carried out under illumination of 70 mW cm⁻² at AM 1.5.