Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

White light emission from fluorene-EDOT and phenothiazine-hydroquinone based D- π -A conjugated systems in the solution, gel and film forms

Vivek Anand and Raghavachari Dhamodharan* Department of Chemistry

Indian Institute of Technology Madras, Chennai 600 036, India

E-mail for Correspondence: damo@iitm.ac.in

Figure S1: Emission spectrum of **FL-E** in solid state ($\lambda_{exc.} = \lambda_{max.}$)

Scheme S1: Synthetic route for PT-Hq

Figure S2: ¹H and ¹³C NMR spectra of **PT-Hq**

Figure S3: Expansion of ¹³C NMR spectrum of **PT-Hq**

Figure S4: DEPT NMR spectrum of PT-Hq

Figure S5: HMBC spectrum of PT-Hq

Figure S6: HSQC spectrum of PT-Hq

Figure S7: MALDI mass spectrum of PT-Hq

Figure S8: ICT studies of FL-E in different solvents

Figure S9. (a) CIE chromaticity diagram obtained on changing the volume of **PT-Hq** from 1 mL to 1.8 mL, while keeping the volume of **FL-E** and **Rh-B** at 1mL each. *(b)* The corresponding fluorescence titration spectra.

Figure S10. (a) CIE chromaticity diagram obtained on changing the volume of **FL-E** from 1 mL to 1.8 mL, while keeping the volume of **PT-Hq** and **Rh-B** at 1mL each. *(b)* The corresponding fluorescence titration spectra.

Figure S11: Emission spectrum of mixture of **FL-E** (10^{-5} M, in THF) and **Rh-B** (10^{-5} M, in water) in solution state, excited at 411 nm. Inset shows the photograph of corresponding white light under UV excitation.

Figure S12: CIE diagram of the corresponding white light emission obtained by the combination of **FL-E** and **Rh-B** in solution state

Figure S13: Emission spectrum of mixture of **FL-E** (10^{-5} M, in THF) and **PT-Hq** (10^{-5} M, in THF) in solution state, excited at 411 nm. Inset shows the CIE of corresponding light under UV excitation.

Figure S14 : Emission spectrum of mixture of **PT-Hq** (10⁻⁵ M, in THF) and **Rh-B** (10⁻⁵ M, in water) in solution state, excited at 411 nm. Inset shows the CIE of corresponding light under UV excitation.

The fluorescence quantum yields for **FL-E** and **PT-Hq** were calculated using fluorescein and anthracene, respectively, as the standards by using the steady-state comparative method:

$$\Phi_{f} = \Phi_{ST} \times \frac{S_{U} / S_{ST} \times A_{ST} / A_{U} \times \eta_{Du}^{2} / \eta_{ST}^{2}}{\left(S1\right)}$$

where, Φ_f is the emission quantum yield of the sample, Φ_{ST} is the emission quantum yield of the standard, and A_{ST} and A_U represent the absorbance of the standard and the sample at the excitation wavelength, respectively. S_{ST} and S_U are the integrated emission band areas of the standard and the sample, respectively, and η_{ST} and η_{Du} are the solvent refractive indices of the standard and the sample.

Figure S15: Emission spectral changes of **PT-Hq** in THF/water mixture with different water volume fractions 0-90 %.

Figure S16: Solid state UV-Visible absorption spectra of compounds **FL-E**, **PT-Hq** and **Rh-B**

Figure S17: B3LYP/6-31G^{*} DFT calculated LUMO +1 contour of **FL-E**