Supporting Information

Synthesis of Porous Mn₂O₃ Embedded in Reduced Graphene

Oxide as Advanced Anode Materials for Lithium Storage

Lingling Zhang,^a Danhua Ge,^a Hongbo Geng,^a Junwei Zheng,^b Xueqin Cao,^{*a} and Hongwei Gu^{*a}

Figure S1. TGA plot of self-assembly aggregation precursor Mn(OAc)₂-C-8.

Figure S2. Energy-dispersive X-ray spectroscopy (EDS) plot of pure Mn_2O_3 nanospheres.

Figure S3. XRD patterns of pure Mn₂O₃ nanospheres and rGO.

Figure S4. XPS spectra for as-prepared $Mn_2O_3@rGO$ composites: the high resolution spectra for (a) C1s, (b) O1s.

Figure S5. XPS spectra for pure Mn_2O_3 and rGO: (a) the survey spectrum and the high resolution spectra for (b) C1s of rGO, (c) Mn2p and (d) O1s.

Figure S6. Cycling performance and coulombic efficiency of pure Mn_2O_3 nanospheres at a current density of 0.1 A g⁻¹.