Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic supplementary information

Rational design of potential spin qubits manipulated by valence tautomerism mechanism: quantum-chemical modeling of the trinuclear transition metal complexes with bischelate linkers

Alyona A. Starikova and Vladimir I. Minkin

New Journal of Chemistry

The details of the DFT UB3LYP*/6-311++G(d,p) calculations of the complexes 3–5 (X = O, NR'; R = H, CH₃, CF₃; R' = H, CH₃, Ph)

As follows form the computational results, the compounds with cobalt diketonates **3** (X=O; R=H, CH₃, CF₃) are stable ($E_{cra6} = 6.1-21.9 \text{ kcal mol}^{-1}$) with respect to dissociation into the isolated components (Table S1). The low-spin LSCo^{III}-SQ structures **S1** and **S3**, in which spin density is mostly localized at redox-active ligand in semiquinonate (SQ) form (Fig. S1) correspond to the ground state of mixed-ligand Co^{II} bis-malonate and bis-acetylacetonate complexes **3** (X=O; R=H, CH₃). The high-spin isomers **S2** and **S4** comprising HSCo^{II} are destabilized as compared to the low-spin electomers by more than 10 kcal mol⁻¹, which does not allow to expect the occurrence of valence-tautomeric (VT) rearrangements. Insertion into the diketonate moiety of electron-withdrawing trifluoromethyl groups results in increasing the stability of the adducts **3** (X=O; R= CH₃, CF₃) and narrowing the energy gap between the low-spin and the high-spin isomers to the value 6.4 kcal mol⁻¹, which indicates the possibility of intramolecular redox-process. Close values of total energies of the isomers **S7** and **S8** of the complex **3** (R=CF₃) witness on probable co-existence of both forms in solution.

Table S1. Spin (S), total energies (E_{total}), stabilization energies (E_{stab}), relative energies (ΔE) and spin density at cobalt ion (q_s^{Co}) in the electromeric forms of the adducts of Co^{II} diketonates **3** (X=O; R=H, CH₃, CF₃) calculated by DFT UB3LYP*/6-311++G(d,p) method.

Structure	c	E_{total} ,	E_{stab} ,	ΔE ,	q_s^{Co} ,
Structure	3	a. u.	kcal mol ⁻¹	kcal mol ⁻¹	a. u.
$S1_{LS}Co^{III}-SQ$	1/2	-2881.82403	18.9	0.0	0.01
$S2_{HS}Co^{II}-Q$	3/2	-2881.80688	8.2	10.8	2.78
S3 LSCo ^{III} -SQ	1/2	-3039.04386	18.5	0.0	0.04
$S4_{HS}Co^{II}-Q$	3/2	-3039.02405	6.1	12.4	2.81
S5 _{LS} Co ^{III} -SQ	1/2	-3634.42334	19.3	0.0	0.04
$\mathbf{S6}$ HSCO ^{II} -Q	3/2	-3634.41314	12.9	6.4	2.75
S7 _{LS} Co ^{III} -SQ	1/2	-4229.79372	21.5	0.0	0.05
$\mathbf{S8}_{\mathrm{HS}}\mathrm{Co}^{\mathrm{II}}$ -Q	3/2	-4229.79433	21.9	-0.4	2.73

Figure S1. Optimized geometries of the electromeric forms of adducts **3** (X=O; R=H, CH₃, CF₃) calculated by the DFT B3LYP*/6-311++G(d,p) method. Hereafter bond lengths are given in Å, hydrogen atoms are omitted for clarity.

The most stable forms (**S9**, **S12** and **S15**) of the adducts **4** (X=NR'; R'=H, CH₃, Ph) of cobalt(II) bis-salicylaldiminates have the low-spin ${}_{LS}Co^{III}$ -SQ electronic state (Fig. S2, Table S2). The high-spin isomers **S10**, **S13** and **S16** comprising ${}_{HS}Co^{II}$ are disfavored as compared to the low-spin ones by more than 12 kcal mol⁻¹ and characterized by low stability against to dissociation ($E_{stab} < 1$ kcal mol⁻¹). Structures (**S11**, **S14** and **S17**) comprising semiquinolate and three-charged cobalt ion in the intermediate-spin state have also been found on the quartet potential energy surface. The predicted energy characteristics of the isomers point to impossibility of VT in adducts **4** (X=NR'; R'=H, CH₃, Ph).

Table S2. Spin (S), total energies (E_{total}), stabilization energies (E_{stab}), relative energies (ΔE) and spin density at cobalt ion (q_s^{Co}) in the electromeric forms of the adducts of Co^{II} bis-aminovinylketonates **4** (X=NR'; R'=H, CH₃, Ph) calculated by DFT UB3LYP*/6-311++G(d,p) method.

Structure	C	E_{total} ,	E_{stab} ,	ΔE ,	q_s^{Co} ,
Structure	3	a. u.	kcal mol ⁻¹	kcal mol ⁻¹	a. u.
S9 _{LS} Co ^{III} -SQ	1/2	-2842.08383	16.7	0.0	0.03
S10 _{HS} Co ^{II} -Q	3/2	-2842.05317	-2.6	19.2	2.85
S11 _{IS} Co ^{III} -SQ	3/2	-2842.06391	4.2	12.5	1.71
S12 _{LS} Co ^{III} -SQ	1/2	-2920.65457	17.9	0.0	0.06
S13 $_{\rm HS}$ Co ^{II} -Q	3/2	-2920.62700	0.6	17.3	2.84
$S14_{IS}Co^{III}-SQ$	3/2	-2920.63514	5.7	12.2	1.71
S15 _{LS} Co ^{III} -SQ	1/2	-3303.96736	14.5	0.0	0.04
S16 _{HS} Co ^{II} -Q	3/2	-3303.94448	0.2	14.4	2.74
S17 _{IS} Co ^{III} -SQ	3/2	-3303.94579	1.0	13.5	1.72

Figure S2. Optimized geometries of the electromeric forms of adducts 4 (X=NR'; R'=H, CH₃, CF₃) calculated by the DFT B3LYP*/6-311++G(d,p) method.

The results of calculations of mixed-ligand complexes **5** (X=NR'; R'=H, CH₃, Ph) are similar to those obtained for the adducts with Co^{II} bis-aminovinylketonates (Fig. S3): the significant stabilization of the low-spin $_{LS}Co^{III}$ -SQ isomers (S18, S21 and S24) and energy preference of the $_{IS}Co^{III}$ -SQ forms comprising Co^{III} in the intermediate-spin state (S20, S23 and S26) as compared to the $_{HS}Co^{II}$ -Q structure with the high-spin Co^{II} (S19, S22 and S25) do not allow to expect the occurrence of VT transitions in adducts of Co^{II} bis-salicylaldiminates.

Table S3. Spin (S), total energies (E_{total}), stabilization energies (E_{stab}), relative energies (ΔE) and spin density at cobalt ion (q_s^{Co}) in the electromeric forms of the adducts of Co^{II} bissalicylaldiminates **5** (X=NR'; R'=H, CH₃, Ph) calculated by DFT UB3LYP*/6-311++G(d,p) method.

Structure S		E_{total} ,	E_{stab} ,	ΔE ,	q_s^{Co} ,
Suucture	3	a. u.	kcal mol ⁻¹	kcal mol ⁻¹	a. u.
S18 _{LS} Co ^{III} -SQ	1/2	-3149.23973	14.3	0.0	0.04
S19 _{HS} Co ^{II} -Q	3/2	-3149.21078	-3.8	18.2	2.85
S20 _{IS} Co ^{III} -SQ	3/2	-3149.22150	2.9	11.4	1.67
S21 $_{LS}Co^{III}$ -SQ	1/2	-3227.81305	19.2	0.0	0.09
S22 $_{\rm HS}{\rm Co}^{\rm II}$ -Q	3/2	-3227.78762	3.3	16.0	2.81
S23 _{IS} Co ^{III} -SQ	3/2	-3227.79643	8.8	10.4	1.66
$S24_{LS}Co^{III}-SQ$	1/2	-3611.12338	30.7	0.0	0.09
S25 _{HS} Co ^{II} -Q	3/2	-3611.10278	17.8	12.9	2.66
S26 _{IS} Co ^{III} -SQ	3/2	-3611.10416	18.7	12.1	1.72

Figure S3. Optimized geometries of the electromeric forms of adducts 5 (X=NR'; R'=H, CH₃, CF₃) calculated by the DFT B3LYP*/6-311++G(d,p) method.

Structure		S	E _{total}	E_{total}^{ZPE}	S^2
		2	a		
	$\alpha\alpha\alpha^{a}$	3/2	-7393.86416	-7392.94957	3.76
7 _{LS} Co ^{III} -SQ-Cu ^{II} -SQ- _{LS} Co ^{III}	ααβ	1/2	-7393.86427		1.76
	αβα	1/2	-7393.86437		1.76
	aaa	5/2	-7393.84183	-7392.93142	9.17
$8 = \mathbf{C} 0^{\mathrm{III}} \mathbf{S} \mathbf{O} \mathbf{C} \mathbf{u}^{\mathrm{II}} \mathbf{O} = \mathbf{C} 0^{\mathrm{II}}$	βαα	3/2	-7393.84194		5.16
0 [2C0 -2Q-Cu -Q-H2C0	αβα	3/2	-7393.84187		5.16
	ββα	1/2	-7393.84176		3.17
	aaa	7/2	-7393.81905	-7392.91240	16.61
$9_{\mathrm{HS}}\mathrm{Co}^{\mathrm{II}}\mathrm{-Q}\mathrm{-Cu}^{\mathrm{II}}\mathrm{-Q}\mathrm{-}_{\mathrm{HS}}\mathrm{Co}^{\mathrm{II}}$	αβα	5/2	-7393.81893		10.61
	ααβ	1/2	-7393.81899		4.61
	aaa	3/2	-9775.35776	-9774.62633	3.76
$10 LSCO^{III}$ -SQ-Cu ^{II} -SQ-LSCO ^{III}	ααβ	1/2	-9775.35790		1.76
	αβα	1/2	-9775.35805		1.75
	aaa	5/2	-9775.35290	-9774.62483	8.82
$11 \sim Co^{III} SO Cu^{II} O \sim Co^{II}$	βαα	3/2	-9775.35304		4.82
11 Lsco -sQ-cu -Q-Hsco	αβα	3/2	-9775.35301		4.82
	ββα	1/2	-9775.35287		2.82
	aaa	7/2	-9775.34631	-9774.62224	15.90
$12_{\rm HS}{\rm Co}^{\rm II}-{\rm Q}-{\rm Cu}^{\rm II}-{\rm Q}-{\rm HS}{\rm Co}^{\rm II}$	αβα	5/2	-9775.34627		9.90
	ααβ	1/2	-9775.34629		3.91
13 MECP			-9775.33863		
14 MECP			-9775.33686		

Table S4. Spin (*S*), total energies without (E_{total}) and with (E_{total}^{ZPE}) taking account of energies of zero harmonic vibrations, expectation values of spin-squared (S^2) operator of the adducts **2** (M=Cu; X=O; R=CH₃, CF₃) calculated by DFT B3LYP*/6-311++G(d,p) method.

^{*a*} α – spin up, β – spin down

Table S5. Spin (*S*), total energies without (E_{total}) and with (E_{total}^{ZPE}) taking account of energies of zero harmonic vibrations, expectation values of spin-squared (S^2) operator of the adduct **2** (M=_{HS}Co; X=O; R=CF₃) calculated by DFT B3LYP*/6-311++G(d,p) method.

Structure			E_{total}	E_{total}^{ZPE}	S^2
			a.	u.	~
	$\alpha \alpha \alpha^{a}$	5/2	-9517.66888	-9516.93747	8.77
$15 {}_{LS}Co^{III}\text{-}SQ\text{-}{}_{HS}Co^{II} {}_{(linker)}\text{-}SQ\text{-}{}_{LS}Co^{III}$	ααβ	3/2	-9517.66903		4.77
	βαβ	1/2	-9517.66917		2.77
	aaa	7/2	-9517.66379	-9516.93592	15.84
	βαα	5/2	-9517.66391		9.83
It LSCO -SQ- HSCO (linker)-Q-HSCO	αβα	1/2	-9517.66386		3.83
	ααβ	1/2	-9517.66374		3.83
	aaa	9/2	-9517.65734	-9516.93309	24.92
$17_{\rm HS}{\rm Co}^{\rm II}-{\rm Q-}_{\rm HS}{\rm Co}^{\rm II}{}_{\rm (linker)}-{\rm Q-}_{\rm HS}{\rm Co}^{\rm II}$	αβα	3/2	-9517.65727		6.91
	ααβ	3/2	-9517.65730		6.91

^{*a*} α – spin up, β – spin down

Table S6. Spin (*S*), total energies (E_{total}), stabilization energies (E_{stab}), relative energies (ΔE), expectation values of spin-squared (S^2) operator and exchange spin coupling constants (J^a) of the electromeric forms of the adducts **2** (M=_{LS}Ni, Zn; X=O; R=CF₃) calculated by the DFT B3LYP*/6-311++G(d,p) method.

Structure	S	<i>E_{total}</i> , a. u.	<i>E</i> _{stab} kcal n	ΔE nol ⁻¹	S^2	<i>J</i> , cm ⁻¹
$18_{\rm LS}{\rm Co}^{\rm III}-{\rm SQ-}_{\rm LS}{\rm Ni}^{\rm II}-{\rm SQ-}_{\rm LS}{\rm Co}^{\rm III}$	2/2	-9643.19992	43.5	0.0	2.013	
BS		-9643.19991			1.014	0.1
$19_{\rm LS}{\rm Co}^{\rm III}-{\rm SQ-}_{\rm LS}{\rm Ni}^{\rm II}-{\rm Q-}_{\rm HS}{\rm Co}^{\rm II}$	4/2	-9643.19499	40.4	3.1	6.074	
BS		-9643.19499			3.074	0.0
$20_{\rm HS}{\rm Co}^{\rm II}-{\rm Q-}_{\rm LS}{\rm Ni}^{\rm II}-{\rm Q-}_{\rm HS}{\rm Co}^{\rm II}$	6/2	-9643.18821	36.1	7.3	12.156	
$21_{\mathrm{LS}}\mathrm{Co}^{\mathrm{III}}\mathrm{-}\mathrm{SQ}\mathrm{-}\mathrm{Zn}^{\mathrm{II}}\mathrm{-}\mathrm{SQ}\mathrm{-}_{\mathrm{LS}}\mathrm{Co}^{\mathrm{III}}$	2/2	-9914.21538	43.3	0.0	2.013	
BS		-9914.21538			1.013	0.0
$22_{\rm LS}{\rm Co}^{\rm III}-{\rm SQ-Zn}^{\rm II}-{\rm Q-}_{\rm HS}{\rm Co}^{\rm II}$	4/2	-9914.21024	40.1	3.2	6.074	
BS		-9914.21024			3.074	0.0
$23_{\mathrm{HS}}\mathrm{Co}^{\mathrm{II}}-\mathrm{Q-Zn}^{\mathrm{II}}-\mathrm{Q-HS}\mathrm{Co}^{\mathrm{II}}$	6/2	-9914.20390	36.1	7.2	12.153	

Figure S4. Optimized geometries of the electromeric forms of adducts **2** ($M=_{LS}Ni$; X=O; $R=CF_3$) calculated by the DFT B3LYP*/6-311++G(d,p) method.

Figure S5. Optimized geometries of the electromeric forms of adducts **2** (M= Zn; X=O; R=CF₃) calculated by the DFT B3LYP*/6-311++G(d,p) method.

Table S7. Spin (*S*) and total energies (E_{total}) of the cobalt bischelates and redox-active ligands calculated by the DFT B3LYP*/6-311++G(d,p) method.

Structure	S	<i>E_{total}</i> , a. u.
Cobalt ^{II} bis-malonate	3/2	-1915.67070
Cobalt ^{II} bis-acetylacetonate	3/2	-2072.89123
Cobalt ^{II} bis-trifluoroacetylacetonate	3/2	-2668.26938
Cobalt ^{II} bis-hexafluoroacetylacetonate	3/2	-3263.63635
Cobalt ^{II} bis-aminovinylketonate	1/2	-1875.93416
Cobalt ^{II} N-methyl-bis-aminovinylketonate	3/2	-1954.50293
Cobalt ^{II} N-phenyl-bis-aminovinylketonate	3/2	-2337.82108
Cobalt ^{II} bis-salicylaldiminate		-2183.09376
Cobalt ^{II} N-methyl-bis-salicylaldiminate		-2261.65926
Cobalt ^{II} N-phenyl-bis-salicylaldiminate		-2644.95127
3-(4',5'-dihydroxy-3',6'-dimethyl) phenylacetylacetonate of Na ^I	0	-966.12314
Tetradentate redox-active ligand with $_{HS}Co^{II}$ bischelate linker	3/2	-2990.32723
Tetradentate redox-active ligand with $_{LS}Ni^{II}$ bischelate linker	0	-3115.85790
Tetradentate redox-active ligand with Cu ^{II} bischelate linker		-3248.01596
Tetradentate redox-active ligand with Zn ^{II} bischelate linker	0	-3386.87368