Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information for:

Synthesis and *in vitro* evaluation of zerumbone pendant derivatives: Potent candidates for anti-diabetic and anti-proliferative activities

B. P. Dhanya,^{a, b} Greeshma Gopalan,^{a, b} T. R. Reshmitha,^c Saranya J,^b P. Sharathna, ^{a, b} I.G. Shibi,^d P. Nisha^{*a,c} and K. V. Radhakrishnan^{*a,b}

a Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram-695019, India

b Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram 695019, India

c Agroprocessing and Natural Products Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram

695 019, India.

d Department of Chemistry, Sree Narayana College, Chempazhanthi, Thiruvananthapuram, Kerala, India.

E-mail: radhu2005@gmail.com

Table of Contents

General Methods	S2
Experimental Procedures	S2-S3
Screening of Parameters	S4-S5
Mechanistic Proposal	S5
Characterization of the Products	S6-S23
¹ H NMR & ¹³ C NMR Spectra	S24-S48
Anti-diabetic assays	S49
MTT assay	S 50

General Methods:

All the chemicals were of the best grade commercially available and were used without further purification. All the solvents were purified according to standard procedures; dry solvents were obtained according to the literature methods and stored over molecular sieves. Analytical thin layer chromatography was performed on glass plates coated with silica gel containing calcium sulfate binder. Gravity column chromatography was performed using 60-120 or 100-200 mesh silica gel, mixtures of hexane-ethyl acetate were used for elution. Melting point was determined on a Buchi melting point apparatus and is uncorrected. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker AV 500 spectrophotometers (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ , in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.25, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); quin (quintet); dd (double doublet); m (multiplet). Coupling constants are reported as J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.03, triplet). Mass spectra were recorded under ESI/HRMS at 61800 resolution using Thermo Scientific Exactive mass spectrometer. IR spectra were recorded on Bruker Alpha FT-IR spectrometer.

Synthesis of 7-Bromo-2,9,9-trimethyl-6-methyl-6-methylenecycloundeca-2,10-dienone (2a)

NBS (0.90g, 5.0mmol) was added to a solution of zerumbone (1.0 g, 4.6 mmol) in acetonitrile/H₂O (1:1, 15 mL) mixture, and stirred vigorously at room temperature for 1 min. H₂O (30 mL) was poured into the solution, filtered immediately, and washed with H₂O several times to afford 7-Bromo-2,9,9-trimethyl-6-methyl-6-methylenecycloundeca-2,10-dienone, **2a** as a colorless solid quantitatively

Synthesis of 6-acetoxymethyl- 2,9,9-trimethylcycloundeca-2,6,10-trienone (2b)

Sodium acetate (82.8 mg, 1.0 mmol) was added to a solution of 2a (200 mg, 0.67 mmol) in DMF (20 mL) at room temperature and stirred for 16 h. The progress of the reaction was monitored by TLC (hexane/ethyl acetate=3:2). The DMF solution was extracted with CH₂Cl₂ (3x30 mL) and

the combined organic extracts were washed with brine (2x30 mL), dried over anhydrous Na_2SO_4 , and concentrated on a rotary evaporator. Chromatography on silica gel, eluting with a 2:1 mixture of hexane and ethyl acetate, afforded 6-acetoxymethyl- 2,9,9-trimethylcycloundeca-2,6,10-trienone, (**2b**) as a colorless oil in 91% yield.

General Procedure for the Synthesis of zerumbone pendant derivatives

6-Acetoxymethyl- 2,9,9-trimethylcycloundeca-2,6,10-trienone (0.137 mmol) and vanillin (0.137 mmol) were taken in a schlenk tube. $Pd_2(dba)_3$.CHCI₃(10 mol %), PPh₃ (40 mol %) as ligand, $Cs_2CO_3(2.0 \text{ equiv.})$ as base were added followed by THF (2mL) and stirred the reaction for 12 h at room temperature. After the completion of the reaction as monitored by TLC, the reaction mixture was concentrated and the crude product was purified by column chromatography on silica gel (100-200 mesh) and hexane: ethylacetate as the eluent to afford the product as a crystalline solid.

$\begin{array}{c} O \\ H \\$							
Entry	Catalyst	Ligand	Base	Solvent	Yield (%) ^[e]		
1 a	-	-	Cs_2CO_3	THF	NR		
2 a	Pd ₂ (dba) ₃ . CHCl ₃	PPh ₃	K_2CO_3	THF	Trace		
3 ^b	Pd ₂ (dba) ₃ . CHCl ₃	PPh ₃	Cs_2CO_3	THF	43		
4 ^a	Pd ₂ (dba) ₃ . CHCl ₃	PPh ₃	Cs ₂ CO ₃	CH ₃ CN	44		
5 a	Pd ₂ (dba) ₃ . CHCl ₃	PPh ₃	Cs ₂ CO ₃	THF	24		
6 ^a	Pd(OAc) ₂	PPh ₃	Cs ₂ CO ₃	THF	Trace		
7 ^a	$Pd(O_2C.CF_3)_2$	PPh ₃	Cs_2CO_3	THF	21		
8 a	$Pd(PPh_3)_4$	-	Cs_2CO_3	THF	24		
9 a	$Pd_2(dba)_3$	PPh ₃	Cs_2CO_3	THF	43		
10°	Pd ₂ (dba) ₃ . CHCl ₃	PPh ₃	Cs_2CO_3	THF	Trace		
11 ^d	Pd ₂ (dba) ₃ . CHCl ₃	PPh ₃	Cs ₂ CO ₃	THF	46		
12 ^e	$Pd(OAc)_2$	dppf	NaH	THF	10		

Table S1 Optimization Studies for a Suitable Catalyst System

Scheme 1: Proposed mechanism

3-methoxy-4-(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8 trienyl)methoxy)benzaldehyde (4a)

Yield: 46 % as a white solid; R_f: 0.14 (1:3 EtOAc: hexane), mp: 185-190°C

IR (neat) v_{max:} 3268, 3032, 2958, 2953, 2857, 2366, 2336, 1651, 1498, 1467, 1366, 1268, 1232, 1173, 1106, 1038, 823, 736, 703, 631, 570, 528 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 9.85 (s, 1H), 7.43- 7.40 (m, 2H), 6.97 (d, *J*= 8Hz, 1H), 6.20 (d, *J*= 16Hz, 1H), 6.07- 6.03 (m, 1H), 6.02 (d, *J*= 16.5 Hz, 1H), 5.58- 5.54 (m, 1H), 4.64 (brs, 1H), 4.51 (brs, 1H), 3.88 (s, 3H), 2.69 (brs, 1H), 2.58 (brs, 1H), 2.41- 2.34 (m, 1H), 2.30- 2.25 (m, 2H), 2.07- 2.05 (m, 1H), 1.78 (s, 3H), 1.28 (s, 3H), 1.09 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.7, 190.5, 160.0, 153.6, 150.1, 148.9, 138.8, 134.6, 131.7, 130.4, 127.2, 126.3, 111.7, 109.1, 66.3, 55.5, 42.5, 37.3, 36.3, 24.8, 12.0 ppm.

HRMS (ESI): *m*/*z* Calcd for C₂₃H₂₈NaO₄: 391.18853, Found: 391.18878.

(2E,6Z,10E)-6-((4-methoxyphenoxy)methyl)-2,9,9-trimethylcycloundeca-2,6,10-trienone (4b)

Yield: 76 % as a white solid; R_f: 0.43 (1:3 EtOAc: hexane), mp: 110-115°C

IR (neat) v_{max}: 2924, 1742, 1652, 1508, 1462, 1365, 1226, 1106, 1038, 827, 625, 578 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 6.83 (s, 4H), 6.08- 6.06 (m, 1H), 6.06 (d, *J*= 16.5 Hz, 1H), 6.02 (d, *J*= 16.5 Hz, 1H), 5.51-5.47 (m, 1H), 4.50 (d, *J*= 9.5 Hz, 1H), 4.31 (d, *J*= 9 Hz, 1H), 3.78 (s, 3H), 2.74- 2.72 (m, 1H), 2.60-2.58 (m, 1H), 2.47-2.42 (m, 1H), 2.32- 2.23 (m, 2H), 2.05- 2.03 (m, 1H), 1.83 (s, 3H), 1.27 (s, 3H), 1.10 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.9, 160.2, 154.0, 152.8, 149.3, 138.4, 135.9, 130.3, 127.4, 116.0, 115.5, 114.7, 65.8, 55.6, 42.4, 37.4, 36.2, 25.0, 12.2 ppm.

HRMS (ESI): *m/z* Calcd for C₂₂H₂₈NaO₃: 363.19361, Found: 363.23306.

(2E,6Z,10E)-2,9,9-trimethyl-6-(p-tolyloxymethyl)cycloundeca-2,6,10-trienone (4c)

Yield: 68 % as colourless liquid; R_f: 0.571 (1:3 EtOAc: hexane)

IR (neat) $\upsilon_{max:}$ 2925, 2852, 2394, 2356, 1714, 1555, 1509, 1430, 1362, 1331, 1232, 1178, 1102, 969, 816, 758, 702, 634, 574, 546 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.08 (d, *J*= 8.5 Hz, 2H), 6.79 (d, *J*= 8.5 Hz, 2H), 6.09- 6.07 (m, 1H), 6.07 (d, *J*= 16.5 Hz, 1H), 6.02 (d, *J*= 16 Hz, 1H), 5.52- 5.48 (m, 1H), 4.51 (d, *J*= 9.5 Hz, 1H), 4.34 (d, *J*= 9.5 Hz, 1H), 2.74- 2.72 (m, 1H), 2.60- 2.57 (m, 1H), 2.48- 2.43 (m, 1H), 2.31 (s, 3H), 2.28- 2.24 (m, 2H), 2.06- 2.03 (m, 1H), 1.83 (s, 3H), 1.27 (s, 3H), 1.10 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.5, 159.9, 156.6, 149.0, 138.5, 135.9, 130.3, 130.1, 129.9, 127.4, 114.3, 65.3, 42.4, 37.4, 36.3, 25.0, 20.5, 12.2 ppm.

HRMS (ESI): *m/z* Calcd for C₂₂H₂₈NaO₂: 347.19870, Found: 347.19887.

4-methoxy-3-(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methoxy)benzaldehyde (4d)

Yield: 63 % as a white solid; R_f: 0.28 (1:3 EtOAc: hexane), mp: 85-90°C

IR (neat) v_{max:} 3351, 2960, 2864, 2724, 1686, 1645, 1588, 1510, 1439, 1395, 1342, 1269, 1161, 1129, 1015, 865, 808, 754, 700, 638, 583 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 9.86 (s, 1H), 7.46-7.40 (m, 2H), 6.98 (d, *J*= 8.5Hz, 1H), 6.26 (d, *J*= 16.5Hz, 1H), 6.06- 6.03 (m, 1H), 6.01 (d, *J*= 16.5Hz, 1H), 5.57- 5.54 (m, 1H), 4.57 (brs, 1H), 4.48 (brs, 1H), 3.89 (s, 3H), 2.67 (brs, 1H), 2.57 (brs, 1H), 2.45 (brs, 1H), 2.31- 2.25 (m, 2H), 2.07- 2.04 (m, 1H), 1.76 (s, 3H), 1.51(s, 6H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 202.4, 190.4, 160.3, 158.0, 155.0, 149.1, 138.0, 133.7, 130.2, 127.2, 122.4, 114.7, 66.1, 55.7, 42.7, 37.3, 36.5, 29.7, 24.9, 12.2 ppm.

HRMS (ESI): *m/z* Calcd for C₂₃H₂₈NaO₄: 391.18853, Found: 391.18878

(2E,6Z,10E)-2,9,9-trimethyl-6-(phenoxymethyl)cycloundeca-2,6,10-trienone (4e)

Yield: 33 % as a white solid; R_f: 0.571 (1:3 EtOAc: hexane), mp: 60-63°C

IR (neat) v_{max:} 3390, 2922, 1590, 1462, 1420, 1121, 1040, 856, 540 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.30-7.26 (m, 2H), 6.96- 6.93 (m, 1H), 6.88- 6.87 (m, 2H), 6.07-5.98 (m, 3H), 5.51- 5.48 (m, 1H), 4.51 (brs, 1H), 4.37 (brs, 1H), 2.71 (brs, 1H), 2.56 (brs, 1H), 2.44- 2.41 (m, 1H), 2.30- 2.23 (m, 2H), 2.05- 2.03 (m, 1H), 1.82 (s, 3H), 1.26 (s, 3H), 1.08 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.7, 160.0, 158.7, 149.2, 138.5, 135.7, 130.5, 129.5, 127.4, 121.0, 114.5, 65.1, 42.5, 37.4, 36.3, 25.0, 12.2 ppm.

HRMS (ESI): *m*/*z* Calcd for C₂₁H₂₆NaO₂: 333.18305, Found: 333.18364.

3-ethoxy-4-(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methoxy)benzaldehyde (4f)

Yield: 23 % as colourless liquid; R_f: 0.314 (1:3 EtOAc: hexane)

IR (neat) υ_{max} : 3384, 2922, 1586, 1514, 1468, 1425, 1367, 1317, 1266, 1120, 1038, 860, 661, 617, 547 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 9.84 (s, 1H), 7.42- 7.39 (m, 2H), 6.98 (d, *J*= 8 Hz, 1H), 6.30 (d, *J*= 16.5Hz, 1H), 6.04- 6.00 (m, 2H), 5.57- 5.53 (m, 1H), 4.60 (brs, 1H), 4.51 (brs, 1H), 4.14- 4.10 (q, 2H), 2.69 (s, 1H), 2.56 (brs, 1H), 2.45- 2.43 (m, 1H), 2.32- 2.26 (m, 2H), 2.06- 2.01(m, 1H), 1.77 (s, 3H), 1.41 (t, *J*= 7Hz, 3H), 1.27 (s, 3H), 1.11 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.8, 190.4, 160.5, 153.7, 149.5, 148.5, 138.9, 134.5, 131.7, 130.4, 127.3, 126.0, 112.0, 110.2, 66.6, 64.2, 42.5, 37.4, 36.6, 24.8, 14.6, 12.2 ppm.

HRMS (ESI): *m*/*z* Calcd for C₂₄H₃₀NaO₄: 405.20418, Found: 405.20346.

. (2E,6Z,10E)-6-((biphenyl-2-yloxy)methyl)-2,9,9-trimethylcycloundeca-2,6,10-trienone (4g)

Yield: 76 % as colourless liquid; R_f: 0.571 (1:3 EtOAc: hexane)

IR (neat) $\upsilon_{max:}$ 3372, 3059, 2962, 2929, 2870, 1897, 1709, 1646, 1504, 1479, 1457, 1434, 1388, 1366, 1267, 1223, 1119, 1054, 1007, 973, 912, 834, 754, 735, 700, 614, 566 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.53- 7.51 (m, 2H), 7.43- 7.40 (m, 2H), 7.36- 7.31 (m, 3H), 7.10-7.09 (m, 1H), 7.03 (d, *J*= 5.5 Hz, 1H), 6.04- 6.02 (m, 1H), 5.99 (d, *J*= 16.5 Hz, 1H), 5.75 (d, *J*= 16.5 Hz, 1H), 5.43- 5.40 (m, 1H), 4.67 (brs, 1H), 4.16 (brs, 1H), 2.66 (brs, 1H), 2.38- 1.99 (m, 5H), 1.69 (s, 3H), 1.24 (s, 3H), 1.08 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.2, 159.2, 155.6, 149.3, 138.3, 136.2, 131.0, 129.4, 128.8, 128.5, 127.8, 127.3, 126.9, 127.3, 126.9, 65.9, 42.2, 37.4, 35.2, 24.4, 11.7 ppm.

HRMS (ESI): *m/z* Calcd for C₂₇H₃₀NaO₂: 409.21435, Found: 409.21418.

2-(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methoxy)benzaldehyde (4h)

Yield: 28% as viscous liquid; R_f: 0.40 (1:3 EtOAc: hexane)

IR (neat) $\upsilon_{max:}$ 3341, 2923, 2855, 1588, 1422, 1366, 1318, 1119, 1040, 858, 669, 618, 524 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 10.5 (s, 1H), 7.87 (dd, *J*1= 7.5 Hz, *J*2=1.5 Hz, 1H), 7.57- 7.54 (m, 1H), 7.09- 7.06 (m, 1H), 7.00 (d, *J*= 8.5 Hz, 1H), 6.10- 6.08 (m, 1H), 6.04 (d, *J*= 16.5 Hz,

1H), 5.80 (d, *J*= 16.5Hz, 1H), 5.58- 5.55 (m, 1H), 4.83 (brs, 1H), 4.36 (brs, 1H), 2.81 (brs, 1H), 2.48- 2.37 (m, 3H), 2.27- 2.25 (m, 1H), 2.12-2.09 (m, 1H), 1.82 (s, 3H), 1.27 (s, 3H), 1.14 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.0, 189.2, 160.8, 149.0, 135.7, 135.1, 128.9, 128.1, 125.2, 120.9, 112.6, 112.4, 64.9, 42.4, 37.4, 35.1, 29.6, 24.5, 11.7 ppm.

HRMS (ESI): *m/z* Calcd for C₂₂H₂₆NaO₃: 361.17796, Found: 361.17822.

4-(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methoxy)benzaldehyde(4i)

Yield: 91 % as a colourless liquid; R_f: 0.42 (1:3 EtOAc: hexane)

IR (neat) v_{max:} 3341, 2923, 2855, 1588, 1422, 1366, 1318, 1119, 1040, 858, 669, 618, 524 cm⁻¹.

¹**H NMR** (**CDCl**₃, **500MHz**): δ 9.88 (s, 1H), 7.83 (d, *J*= 8.5Hz, 2H), 6.99 (d, *J*= 8.5 Hz, 2H), 6.07- 6.06 (m, 1H), 6.02 (d, *J*= 16.5 Hz, 1H), 5.97 (d, *J*= 16.5 Hz, 1H), 5.56-5.53 (m, 1H), 4.63 (brs, 1H), 4.45 (brs, 1H), 2.68 (s, 1H), 2.53 (s, 1H), 2.42- 2.39 (m, 1H), 2.33- 2.26 (m, 2H), 2.09- 2.07 (m, 1H), 1.82 (s, 3H), 1.27 (s, 3H), 1.10 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.6, 190.4, 163.7, 159.7, 149.1, 137.9, 135.6, 132.0, 131.2, 130.1, 127.5, 114.9, 67.8, 42.5, 39.8, 37.4, 37.0, 31.8, 24.9, 21.2, 12.2 ppm.

HRMS (ESI): *m/z* Calcd for C₂₂H₂₆NaO₃: 361.17796, Found: 361.17822.

4-(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methoxy)-2H-chromen-2-one (4j)

Yield: 31 % as pale yellow solid; R_f: 0.34 (1:3 EtOAc: hexane), mp: 165-167°C

IR (neat) v_{max:} 3391, 2960, 2924, 2854, 1724, 1649, 1436, 1382, 1283, 1099, 972, 747, 697 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.77 (d, *J*= 8Hz, 1H), 7.60- 7.57 (m, 1H), 7.36 (d, *J*= 8Hz, 1H), 7.30- 7.28 (m, 1H), 6.12- 6.09 (m, 1H), 6.06 (d, *J*= 16.5Hz, 1H), 5.84 (d, *J*= 16.5Hz, 1H), 5.71 (s, 1H), 5.66- 5.63 (m, 1H), 4.82 (brs, 1H), 4.47 (brs, 1H), 2.75 (brs, 1H), 2.51- 2.47 (m, 2H), 2.41- 2.31 (m, 3H), 1.84 (s, 3H), 1.27 (s, 3H), 1.16 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 202.8, 165.1, 158.8, 153.3, 148.7, 138.7, 133.3, 132.5, 132.2, 127.5, 123.9, 122.7, 116.9, 115.5, 91.9, 66.0, 42.5, 37.5, 35.2, 29.6, 24.5, 12.1 ppm.

HRMS (ESI): *m/z* Calcd for C₂₄H₂₆NaO₄: 401.17288, Found: 434.24539.

(2E,6Z,10E)-2,9,9-trimethyl-6-((quinolin-6-yloxy)methyl)cycloundeca-2,6,10-trienone (4k)

Yield: 73 % as a white solid; R_f: 0.17 (1:3 EtOAc: hexane), mp: 125°C

IR (neat) υ_{max} : 3012, 2918, 2383, 1868, 1829, 1796, 1744, 1652, 1541, 1521, 1422, 1366, 1317, 1272, 1209, 1161, 1119, 1018, 752, 601 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 8.75 (d, *J*= 3Hz, 1H), 8.02- 7.98 (m, 2H), 7.35- 7.31 (m, 2H), 7.05 (d, *J*= 2.5Hz, 1H), 6.09- 6.02 (m, 3H), 5.56- 5.53 (m, 1H), 4.65 (brs, 1H), 4.48 (brs, 1H), 2.75 (brs, 1H), 2.57 (brs, 1H), 2.48- 2.45 (m, 1H), 2.34- 2.27 (m, 2H), 2.24- 2.08 (m, 1H), 1.84 (s, 3H), 1.27 (s, 3H), 1.12 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.3, 159.6, 156.7, 149.0, 148.0, 144.4, 138.5, 135.2, 134.7, 131.1, 130.9, 129.2, 127.5, 122.2, 121.4, 106.0, 65.5, 42.5, 37.4, 36.1, 25.0, 12.2 ppm.

HRMS (ESI): *m/z* Calcd for C₂₄H₂₈NO₂: 362.21200, Found: 362.21200

(2E,6Z,10E)-6-((4'-hydroxybiphenyl-4-yloxy)methyl)-2,9,9-trimethylcycloundeca-2,6,10trienone (4l)

Yield: 26 % as viscous liquid; R_f: 0.371 (1:3 EtOAc: hexane)

IR (neat) υ_{max} : 3341, 2923, 2854, 2369, 2338, 1742, 1589, 1503, 1461, 1422, 1368, 1316, 1268, 1163, 1118, 1038, 861, 823, 666, 620, 535 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.46 (d, *J*= 9 Hz, 2H), 7.42 (d, *J*= 8.5 Hz, 2H), 6.94 (d, *J*= 8.5 Hz, 2H), 6.89 (d, *J*= 8.5 Hz, 2H), 6.11- 6.08 (m, 2H), 6.04 (d, *J*= 16.5, Hz 1H), 5.55- 5.52 (m, 1H), 5.08 (s, 1H), 4.56 (brs, 1H), 4.42 (brs, 1H), 2.76- 2.75 (m, 1H), 2.62- 2.60 (m, 1H), 2.50- 2.45 (m, 1H), 2.37- 2.27 (m, 2H), 2.09- 2.06 (m, 1H), 1.85 (s, 3H), 1.28 (s, 3H), 1.11 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 204.1, 160.2, 157.8, 154.9, 149.4, 138.5, 135.6, 133.8, 133.4, 130.6, 127.9, 127.8, 127.4, 115.6, 114.7, 65.3, 42.5, 37.4, 36.2, 25.0, 22.3, 12.2, 8.5 ppm.

HRMS (ESI): *m/z* Calcd for C₂₇H₃₀NaO₃: 425.20926, Found: 425.20904.

(2E,2'E,6Z,6'Z,10E,10'E)-6,6'-(biphenyl-4,4'-diylbis(oxy))bis(methylene)bis(2,9,9trimethylcycloundeca-2,6,10-trienone) (4l')

Yield: 38 % as a white solid; R_f: 0.286 (1:3 EtOAc: hexane), mp: 150- 155°C

IR (neat) v_{max:} 3268, 3032, 2958, 2953, 2857, 2366, 2336, 1651, 1498, 1467, 1366, 1268, 1232, 1173, 1106, 1038, 823, 736, 703, 631, 570, 528 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.47 (d, *J*= 8.5, Hz, 4H), 6.95 (d, *J*= 9Hz, 4H), 6.10-6.07 (m, 4H), 6.04 (d, *J*= 16.5 Hz, 2H), 5.55- 5.52 (m, 2H), 4.57 (brs, 2H), 4.42 (brs, 2H), 2.76- 2.74 (m, 2H), 2.62- 2.60 (m, 2H), 2.50- 2.45 (m, 2H), 2.37- 2.20 (m, 4H), 2.09- 2.07 (m, 2H), 1.85 (s, 6H), 1.28 (s, 6H), 1.11 (s, 6H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.7, 160.0, 157.9, 149.2, 138.5, 135.6, 133.8, 130.6, 127.8, 127.5, 114.8, 65.3, 42.5, 37.4, 36.2, 25.0, 12.2 ppm.

HRMS (ESI): *m/z* Calcd for C₄₂H₅₀NaO₄: 641.36068, Found: 641.36.34.

(2E,6Z,10E)-6-((2-hydroxyphenoxy)methyl)-2,9,9-trimethylcycloundeca-2,6,10-trienone (3m)

Yield: 19 % as a white solid; R_f: 0.4 (1:3 EtOAc: hexane), mp: 100- 105°C

IR (neat) v_{max:} 3395, 2923, 2854, 1587, 1463, 1420, 1364, 1121, 1041, 857, 619 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 6.94- 6.84 (m, 4H), 6.09- 6.08 (m, 1H), 6.03 (d, *J*= 16.5Hz, 1H), 5.82 (d, *J*= 16.5 Hz, 1H), 5.57- 5.59 (m, 1H), 5.51 (s, 1H), 4.71 (brs, 1H), 4.35 (brs, 1H), 2.76 (brs, 1H), 2.51- 2.37 (m, 3H), 2.29- 2.26 (m, 1H), 2.09 (brs, 1H), 1.83 (s, 3H), 1.28 (s, 3H), 1.13 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.1, 159.2, 149.1, 145.9, 145.6, 138.5, 135.4, 130.8, 127.5, 122.1, 120.1, 114.9, 111.9, 65.5, 42.4, 37.5, 35.3, 24.8, 12.0 ppm.

HRMS (ESI): *m/z* Calcd for C₂₁H₂₆NaO₃: 349.17796, Found: 349.17866.

(2E,2'E,6Z,6'Z,10E,10'E)-6,6'-(1,2-phenylenebis(oxy))bis(methylene)bis(2,9,9trimethylcycloundeca-2,6,10-trienone) (4m')

Yield: 15 % as a white solid; R_f: 0.4 (1:3 EtOAc: hexane), mp: 165-170°C

IR (neat) $\upsilon_{max:}$ 3058, 3035, 2960, 2926, 1736, 1652, 1592, 1501, 1454, 1387, 1365, 1246, 1210, 1004, 907, 836, 742, 700, 623, 580 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 6.92 (s, 4H), 6.06- 6.05 (m, 2H), 6.02 (d, *J*= 16.5 Hz, 2H), 5.95 (d, *J*= 16.5 Hz, 2H), 5.52- 5.48 (m, 2H), 4.65 (brs, 2H), 4.31 (brs, 2H), 2.78 (brs, 2H), 2.57 (brs, 2H), 2.48 (brs, 2H), 2.30 (brs, 2H), 2.19 (brs, 2H), 2.05 (brs, 2H), 1.79 (s, 6H), 1.27 (s, 6H), 1.12 (s, 6H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.4, 159.6, 149.0, 148.9, 138.6, 136.0, 130.0, 127.4, 121.6, 114.3, 65.8, 42.4, 37.4, 35.6, 24.7, 12.1 ppm.

HRMS (ESI): *m/z* Calcd for C₃₆H₄₆NaO₄: 565.32938, Found: 565.32991.

(2E,6Z,10E)-6-((2-hydroxy-3-methoxyphenoxy)methyl)-2,9,9-trimethylcycloundeca-2,6,10trienone (4n)

Yield: 15 % as a white solid; R_f: 0.25 (1:3 EtOAc: hexane), mp: 133-135°C

IR (neat) $\upsilon_{max:}$ 3377, 2924, 2032, 1590, 1473, 1421, 1313, 1120, 1090, 1040, 858, 779, 620, 539 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 6.78- 6.75 (m, 1H), 6.60- 6.58 (m, 2H), 6.06- 6.05 (m, 1H), 6.00-5.99 (m, 2H), 5.53- 5.50 (m, 1H), 5.44 (s, 1H), 4.65 (brs, 1H), 4.40 (brs, 1H), 3.91 (s, 3H), 2.91-2.78 (m, 1H), 2.61 (brs, 1H), 2.48 (brs, 1H), 2.33- 2.30 (m, 1H), 2.23 (brs, 1H), 2.06- 2.02 (m, 1H), 1.81 (s, 3H), 1.27 (s, 3H), 1.11 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125MHz): δ 203.6, 159.7, 153.4, 147.6, 146.1, 138.7, 135.7, 130.4, 127.5, 118.7, 114.2, 105.3, 66.4, 56.0, 42.2, 37.2, 36.0, 25.1, 12.1 ppm.

HRMS (ESI): *m*/*z* Calcd for C₂₂H₂₈NaO₄: 379.18853, Found: 379.18902.

(2E,6Z,10E)-6-((2-hydroxy-6-methoxyphenoxy)methyl)-2,9,9-trimethylcycloundeca-2,6,10trienone (4n')

Yield: 13 % as a white solid; R_f: 0.28 (1:3 EtOAc: hexane), mp: 132-135°C

IR (neat) v_{max:} 3377, 2924, 1590, 1473, 1421, 1313, 1120, 1090, 1040, 858, 779, 620, 539 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 6.94 (t, *J*= 8.5 Hz, 1H), 6.60 (dd, *J*1= 8.5 Hz, *J*2= 1Hz, 1H), 6.48 (dd, *J*1= 8.5 Hz, *J*2= 1Hz, 1H), 6.04- 6.02 (m, 1H), 6.00 (d, *J*= 16.5Hz, 1H), 5.82 (d, = 16.5Hz, 1H), 5.69 (s, 1H), 5.52- 5.48 (m, 1H), 4.58 (brs, 1H), 4.38 (brs, 1H), 3.89 (s, 3H), 2.89- 2.88 (m, 1H), 2.69- 2.68 (m, 1H), 2.57- 2.46 (m, 1H), 2.37- 2.35 (m, 1H), 2.26 (brs, 1H), 2.00- 1.97 (m, 1H), 1.81 (s, 3H), 1.25 (s, 3H), 1.09 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.4, 159.6, 152.5, 149.8, 149.0, 138.4, 136.3, 134.2, 130.8, 127.3, 124.3, 108.3, 103.9, 68.9, 55.7, 42.2, 37.3, 35.7, 24.8, 12.0 ppm.

HRMS (ESI): *m*/*z* Calcd for C₂₂H₂₈NaO₄: 379.18853, Found: 379.18902.

2-(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methoxy)benzaldehyde (6b)

Yield: 28 % as a white solid; R_f: 0.17 (1:3 EtOAc: hexane), mp: 110-112°C

IR (neat) v_{max:} 2922, 2856, 2404, 2300, 1707, 1641, 1600, 1514, 1458, 1366, 1282, 1215 1102, 1029, 970, 766 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.61 (dd, *J*1=8.5Hz, *J*2= 2 Hz, 1H), 7.52 (d, *J*= 1.5Hz, 1H), 6.93 (d, *J*= 8.5 Hz, 1H), 6.05- 6.04 (m, 2H), 6.01 (d, *J*= 16.5Hz, 1H), 5.94 (d, *J*= 16.5Hz, 1H), 5.52- 5.48 (m, 1H), 4.89 (d, *J*= 12Hz, 1H), 4.68 (d, *J*= 12Hz, 1H), 3.94 (s, 3H), 2.70- 2.69 (m, 1H), 2.59- 2.45 (m, 2H), 2.31- 2.25 (m, 2H), 2.08- 2.04 (m, 1H), 1.70 (s, 3H), 1.26 (s, 3H), 1.13 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 206.1, 161.1, 150.3, 146.1, 138.4, 134.6, 131.2, 127.2, 124.1, 122.0, 120.1, 114.0, 111.5, 61.3, 55.9, 42.4, 37.5, 35.7, 29.8, 24.7, 11.9 ppm.

HRMS (ESI): *m/z* Calcd for C₂₃H₂₈NaO₅: 407.18344, Found: 407.18428.

((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methyl 2,3-dimethoxybenzoate (6c)

Yield: 19 % as a white solid; R_f: 0.17 (1:3 EtOAc: hexane), mp: 65-67°C

IR (neat) v_{max:} 2919, 2850, 2370, 2341, 1974, 1798, 1741, 1649, 1582, 1373, 1160, 1119, 662, 619 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.29- 7.28 (m, 1H), 7.10- 7.06 (m, 2H), 6.07- 6.04 (m, 1H), 6.00 (d, *J*= 16.5 Hz, 1H), 5.88 (d, *J*= 16.5 Hz, 1H), 5.53- 5.49 (m, 1H), 4.92 (brs, 1H), 4.68 (brs, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 2.77- 2.76 (m, 1H), 2.58- 2.54 (m, 2H), 2.32- 2.28 (m, 2H), 2.09- 2.06 (m, 1H), 1.71 (s, 3H), 1.27 (s, 3H), 1.14 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.3, 159.9, 153.7, 148.7, 138.4, 134.8, 127.1, 125.7, 123.6, 121.9, 117.7, 115.9, 61.3, 55.9, 37.4, 35.4, 29.8, 24.7, 22.7, 12.1 ppm.

HRMS (ESI): *m/z* Calcd for C₂₄H₃₀NaO₅: 421.19909, Found: 421.19976.

((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methyl 2,6-dimethoxybenzoate (6d)

Yield: 14 % as a white solid; R_f: 0.28 (1:3 EtOAc: hexane), mp: 103-105°C

IR (neat) v_{max:} 3363, 2924, 2852, 2038, 1739, 1648, 1423, 1370, 1230, 1122, 1040, 856, 780, 567, 527 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.30 (d, *J*=8Hz, 1H), 6.56 (d, *J*= 8.5 Hz, 2H), 6.03-6.01 (m, 1H), 5.99- 5.93 (m, 2H), 5.52-5.48 (m, 1H), 4.88 (d, *J*= 11.5Hz, 1H), 4.73 (d, *J*= 12Hz, 1H), 3.79 (s, 6H), 2.71- 2.69 (m, 1H), 2.54-2.49 (m, 2H), 2.26 (brs, 2H), 2.05- 2.03 (m, 1H), 1.52 (s, 3H), 1.24 (s, 3H), 1.10 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 204.2, 166.5, 159.9, 157.2, 149.1, 138.4, 134.3, 131.6, 131.3, 127.2, 113.4, 103.8, 62.3, 55.8, 42.5, 37.3, 36.9, 36.6, 24.8, 11.5 ppm.

HRMS (ESI): *m/z* Calcd for C₂₄H₃₀NaO₅: 421.19909, Found: 421.19976.

((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methyl 5-bromo-2,4dimethoxybenzoate (6e)

Yield: 10% as a pale yellow liquid; R_f: 0.171(1:3 EtOAc: hexane)

IR (neat) υ_{max} : 2924, 2370, 2118, 1705, 1650, 1597, 1463, 1402, 1319, 1279, 1238, 1181, 1111, 1024, 823, 624, 534 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 8.01 (s, 1H), 6.46 (s, 1H), 6.01- 5.97 (m, 1H), 5.90 (d, *J*= 16.5 Hz, 1H), 5.91 (d, *J*= 16Hz, 1H), 5.50- 5.47 (m, 1H), 4.89 (d, *J*= 11.5 Hz, 1H), 4.63 (d, *J*= 12 Hz, 1H), 3.96 (s, 3H), 3.91 (s, 3H), 2.71 (brs, 1 H), 2.55-2.49 (m, 2H), 2.30-2.27 (m, 2H), 2.06- 2.04 (m, 1H), 1.69 (s, 3H), 1.25 (s, 3H), 1.13 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.7, 164.1, 159.7, 148.8, 138.4, 136.1, 134.6, 131.3, 127.2, 115.7, 115.1, 114.5, 102.1, 61.1, 56.0, 42.2, 37.2, 35.7, 31.0, 24.5, 11.8 ppm.

HRMS (ESI): *m*/*z* Calcd for C₂₄H₂₉BrNaO₅: 499.10961, Found: 499.10787.

((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methyl-2,4,5trimethoxybenzoate (6f)

Yield: 17 % as a white solid; R_f: 0.412 (1:3 EtOAc: hexane), mp: 117-120°C

IR (neat) v_{max:} 3402, 2959, 1716, 1691, 1648, 1611, 1516, 1462, 1405, 1360, 1244, 1212, 1161, 1072, 1030, 779, 700, 531 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** 7.39 (S, 1H), 6.54 (S, 1H), 6.08-6.05 (m, 1H), 6.02 (d, *J*= 16.5Hz, 1H), 5.95 (d, *J*= 16.5Hz, 1H), 5.52-5.49 (m, 1H), 4.96 (d, *J*= 11.5 Hz, 1H), 4.62 (d, *J*= 12.Hz, 1H), 3.96 (s, 3H), 3.89 (s, 3H), 3.87 (s, 3H), 2.79-2.77 (m, 1H), 2.60- 2.55 (m, 2H), 2.82- 2.25 (m, 2H), 1.80-1.78 (m, 1H), 1.70 (s, 3H), 1.27 (s, 3H), 1.13 (s, 3H) ppm.

¹³C NMR (CDCl₃, 500MHz): 203.5, 165.5, 159.7, 155.1, 153.7, 148.9, 142.5, 138.5, 134.9, 130.8, 127.2, 114.6, 110.4, 61.0, 56.6, 56.4, 55.9, 42.3, 37.3, 35.7, 24.7, 11.8 ppm.

HRMS (ESI): *m/z* Calcd for C₂₅H₃₂NaO₆: 451.20966, Found: 451.21035.

(E)-((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methyl 3-(4-(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methoxy)phenyl)acrylate (8a)

Yield: 34 % as colourless liquid; R_f: 0.34 (1:3 EtOAc: hexane)

IR (neat) v_{max:} 3403, 3037, 2960, 2926, 2866, 1708, 1652, 1601, 1510, 1453, 1388, 1362, 1305, 1244, 1159, 1105, 1064, 1001, 906, 831, 780, 736, 699, 632 cm⁻¹.

¹H NMR (CDCl₃, 500MHz): 7.64 (d, *J*=16Hz, 1H), 7.46 (d, *J*=8.5 Hz, 2H), 6.89 (d, *J*=8.5Hz, 2H), 6.28 (d, *J*=16Hz, 1H), 6.06-6.05 (m, 2H), 6.02-5.98 (m, 4H), 5.55-5.48 (m, 2H), 4.73 (brs,

1H), 4.65-4.62 (m, 1H), 4.57 (brs, 1H), 4.40- 4.38 (m, 1H), 2.69-2.66 (m, 2H), 2.53-2.36 (m, 4H), 2.32-2.17 (m, 4H), 2.06-2.05 (m, 2H), 1.83 (s, 3H), 1.79 (s, 3H), 1.27 (s, 6H), 1.12 (s, 6H).

¹³C NMR (CDCl₃, 125MHz): 203.5, 203.4, 166.9, 160.6, 159.9, 149.0, 144.9, 138.5, 135.1, 134.6, 131.5, 131.0, 129.8, 127.3, 127.2, 115.2, 114.9, 65.3, 61.0, 42.5, 42.3, 37.4, 37.3, 36.0, 35.9, 24.8, 24.9, 12.7 ppm.

HRMS (ESI): *m/z* Calcd for C₃₉H₄₈NaO₅: 619.33994, Found: 619.33987.

(E)-((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methyl 3-(3-methoxy-4-(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methoxy)phenyl)acrylate (8b)

Yield: 33 % as a colourless liquid; R_f: 0.28 (1:3 EtOAc: hexane)

IR (neat) v_{max:} 3398, 3057, 2963, 2922, 2412, 2356, 1710, 1640, 1512, 1464, 1424, 1363, 1266, 1161, 1033, 738, 704 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.05 (d, *J*= 8 Hz, 1H), 7.01 (d, *J*= 1 Hz, 1H), 6.86 (d, *J*= 8.5 Hz, 1H), 6.27 (d, *J*= 16 Hz, 1H), 6.20 (d, *J*= 16.5 Hz, 1H), 6.07- 6.04 (m, 2H), 5.99- 5.92 (m, 4H), 5.55- 5.48 (m, 2H), 4.72 (brs, 1H), 4.65- 4.63 (m, 1H), 4.56- 4.53 (m, 1H), 4.44 (brs, 1H), 3.84 (s, 3H), 2.69- 2.66 (m, 2H), 2.55- 2.52 (m, 4H), 2.46- 2.42 (m, 2H), 2.32- 2.24 (m, 4H), 1.80 (s, 3H), 1.77 (s, 3H), 1.27 (s, 3H), 1.26 (s, 3H), 1.12 (s, 3H), 1.09 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.7, 203.4, 166.8, 160.1, 159.7, 150.4, 149.9, 149.0, 145.2, 145.2, 138.8, 138.4, 135.0, 134.6, 131.3, 127.6, 127.2, 122.1, 115.4, 112.9, 109.9, 66.3, 61.1, 55.4, 42.5, 42.4, 37.3, 36.3, 35.9, 29.7, 29.4, 24.9, 24.1, 14.2, 12.2, 12.1 ppm.

HRMS (ESI): *m*/*z* Calcd for C₄₀H₅₀NaO₆: 649.35051, Found: 649.35112.

(E)-((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methyl 3-(3,4bis(((1Z,5E,8E)-4,4,8-trimethyl-7-oxocycloundeca-1,5,8-trienyl)methoxy)phenyl)acrylate (8c)

Yield:29 % as a colourless liquid; R_f: 0.17 (1:3 EtOAc: hexane)

IR (neat) $\upsilon_{max:}$ 3436, 2962, 2921, 2852, 2075, 1705, 1646, 1511, 1460, 1431, 1364, 1260, 1161, 1134, 1006, 738, 702, 530 cm⁻¹.

¹**H NMR (CDCl₃, 500MHz):** δ 7.58 (d, *J*= 16 Hz, 1H), 7.09 (d, *J*= 8 Hz, 1H), 7.02 (s, 1H), 6.88 (d, *J*= 8Hz, 1H), 6.24 (d, *J*= 16 Hz, 1H), 6.09- 5.91 (m, 9H), 5.54- 5.49 (m, 3H), 4.70- 4.67 (m, 4H), 4.35- 4.34 (m, 2H), 2.72- 2.65 (m, 3H), 2.52- 2.49 (m, 7H), 2.36- 2.27 (m, 8H), 1.79 (s, 9H), 1.26 (s, 9H), 1.12 (s, 9H) ppm.

¹³C NMR (CDCl₃, 125MHz): δ 203.4, 203.3, 166.7, 159.6, 149.2, 148.9, 138.6, 138.6, 135.3, 135.2, 134.4, 131.8, 130.6, 127.4, 127.1, 122.4, 115.6, 11.33, 112.5, 65.7, 29.3, 24.8, 24.6, 24.0, 12.1, 12.0ppm.

HRMS (ESI): *m*/*z* Calcd for C₅₄H₆₈NaO₇: 851.48627, Found: 851.48746.

¹³C NMR of 4a

¹³C NMR of 4b

¹³C NMR of 4c

¹³C NMR of 4d

¹³C NMR of 4e

¹³C NMR of 4f

¹³C NMR of 4g

¹³C NMR of 4h

¹³C NMR of 4j

¹³C NMR of 4l

70 60 50 40 30 20 10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 ft.(ppm)

والمتحدث والمتحدث والمتحدث والمتعالية والمتعالية والمتحدث والمتحاد والمتحدث والمتحد والمتحد والمتحد والمتحد وا

0 -10

¹H NMR of 4l'

¹³C NMR of 4m

¹³C NMR of 4m'

¹³C NMR of 4n

¹³C NMR of 4n'

¹³C NMR of 6c

¹³C NMR of 6d

¹³C NMR of 6e

¹³C NMR of 8a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of 8b

¹³C NMR of 8c

Anti-diabetic assays

1. α-Amylase inhibition assay

α-Amylase inhibition assay was carried out according to Xiao et al.²⁵ based on the starchiodine test. The total assay mixture composed of 40 µL 0.02 M sodium phosphate buffer (pH 6.9 containing 6 mM NaCl), 0.02 units of porcine pancreatic amylase solution and compounds / standard at different concentrations were incubated at 37°C for 10 min. Then 40 µL soluble starch (1%, w/v) was added to each reaction well and incubated at 37°C for 15 min. The reaction was stopped by addition of 1 M HCl (20 µL), followed by the addition of 100 µL of iodine reagent (5 mM I₂ and 5 mM KI), which will react with remaining starch. The absorbance was read at 600 nm on a microplate reader. The known α-amylase inhibitor, acarbose, was used a positive control.

2. α-Glucosidase enzyme inhibition assay

The α -glucosidase enzyme inhibition assay was carried out according to the method described by Apostolidis.²⁶ The enzyme inhibition assay mixture contained 50 µL p-nitrophenyl- α -D-glucopyranoside, different concentrations of compound/standard and the reaction mixture was made up to 2.8 mL with sodium phosphate buffer (pH 6.8; 50 mM). The reaction was initiated by adding 20 µL of α -glucosidase enzyme. The reaction was monitored by increase in absorbance at 405 nm.

3. Antiglycation assay

It was performed according to the methods reported by Matsuura et al. with slight modifications.²³ About 500 μ L of albumin (1 mg/mL final concentration) was incubated with 400 μ L of glucose (500 mM) in the presence of 100 μ L of compound at different concentrations. The reaction was allowed to proceed at 60 °C for 24 h and thereafter reaction was stopped by adding 10 μ L of 100% TCA. Then the mixture was kept at 4 °C for 10 min before subjected to centrifugation at 10000g. The precipitate was redissolved in 500 μ L alkaline PBS (pH10) and immediately quantified for relative amount of glycated BSA based on fluorescence intensity at 370 nm (excitation) and 440 nm (emission).

Compounds	a-amylase	a-alucosidase	Antiglycation		
Compounds	u-annynast	u-grucosiuasc	¹ mugiyeanon		
	IC 50 (µm/mL)				
4 a	22.191±0.262	17.923±1.196	28.874±1.704		
4b	27.532±1.291	25.723±0.726	27.597±1.895		
4 c	14.097±1.111	25.573±0.955	24.835±1.275		
4d	12.975±0.815	27.839±0.594	32.217±0.346		
4e	18.599±0.540	14.061±0.103	22.194±0.798		
4f	18.231±1.230	23.754±0.453	29.254±0.302		
4 g	24.972±0.152	32.952±0.135	28.491±1.149		
4h	11.933±1.540	29.591±0.922	25.411±0.208		
4i	29.491±0.142	25.363±0.466	15.089±0.187		
4j	17.585±1.120	33.215±0.132	29.781±0.222		
4 k	27.086±0.609	25.804±0.845	32.284±0.829		
41	43.657±1.610	46.940±0.910	46.433±0.067		
41'	19.46±0.098	25.581±0.065	29.281±0.252		
4 m	19.019±1.185	25.374 ± 0.700	21.257±1.504		
4m'	27.939±1.778	41.852±1.306	34.959±1.705		
4 n	12.504±0.621	26.528 ± 0.585	27.864±0.225		
4n'	19.466±1.389	19.573±1.977	25.931±1.547		
6b	28.087±0.164	28.691 ± 0.652	34.281±0.567		
6с	33.230±0.591	27.090 ± 0.447	30.108±1.293		
6d	15.900±0.533	29.917±1.306	18.672 ± 2.771		
6e	26.462±1.469	33.766 ± 0.687	35.247±1.982		
6f	21.523±0.946	19.912 ± 0.039	34.528±1.754		
8 a	24.739±1.310	52.180±0.750	47.141±0.033		
8b	32.849±1.005	27.948±0.199	36.962±0.626		
8c	35.070±1.028	37.563±0.554	62.697 ± 0.080		
Zerumbone	51.070±0.254	271.053±0.332	104.86±0.183		
Standard	8.5±0.898	81.3±1.10	158.23±0.718		
	(Acarbose)	(Acarbose)	(Ascorbic acid)		

Table S2 Anti-diabetic assay

4. MTT assay

The MTT (3-(4, 5-dimethylthiazole-2-yl)-2, 5- diphenyltetrazolium bromide) assay developed by Mosmann was used with slight modifications. In brief, the trypsinized cells from T-25 flask were seeded in each well of 96-well flat- bottomed tissue culture plate at a density of 1x104 cells/well in growth medium and cultured at 37°C in 5% CO2 to adhere. After 48hr incubation, the supernatant was discarded and the cells were pretreated with growth medium and were subsequently mixed with both standard (Paclitaxel) and (compound 4b, 4d, 4k, 4e, 8a, 8b and 8c) to achieve a final volume of 100 μ l and then cultured for 24 hr. The compound was prepared as 1.0 mg/ml concentration stock solutions in DMSO. Each well then received 20 μ l of fresh MTT (5mg/ml in PBS) followed by incubation for 4hr at 37°C. The supernatant growth medium was removed from the wells and replaced with 100 μ l of DMSO to solubilize the colored formazan product. After 30 min incubation, the absorbance (OD) of the culture plate was read at a wavelength of 570 nm on a microplate reader (Biotek Synergy 4, VT, USA). The percent cell viability was determined with respect to control, is calculated using formula. % Viability = corrected OD of sample /Control OD * 100 and percentage of inhibition was determined by using formula, % Inhibition = 100-%viability.