Electronic Supplementary Information

Metal-free-mediated synthesis of fulleropyrrolines by the reaction of [60]fullerene with β-substituted ethylamines

Jun-Jun Xiang,^{‡a} Cheng Huang,^{‡a} Hui-Juan Wang,^{‡b} Fa-Bao Li,^{*a} Ji-Long Shi,^a

Yong-Shun Huang,^a Li Liu,^{*a} Chao-Yang Liu,^{*b} Abdullah M. Asiri,^c and Khalid A.

Alamry^c

^aHubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic

Functional Molecules, and School of Chemistry and Chemical Engineering, Hubei

University, Wuhan 430062, People's Republic of China

^bState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,

Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and

Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of

China

^cDepartment of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah

21589, Saudi Arabia

E-mail: lfb0615@hubu.edu.cn; liulihubei@hubu.edu.cn; chyliu@wipm.ac.cn These authors contributed equally to this work.

Experimental section	S3-S12
Typical MALDI-TOF MS of fulleropyrroline	S13
Typical UV-vis spectrum of fulleropyrroline	S14
¹ H NMR spectrum of compound 2a	S15
¹³ C NMR spectrum of compound 2a	S16-S17
¹ H NMR spectrum of compound 2b	S18
¹³ C NMR spectrum of compound 2b	S19-S20
¹ H NMR spectrum of compound 2 c	S21
¹³ C NMR spectrum of compound 2 c	S22-S23
¹ H NMR spectrum of compound 2d	S24
¹³ C NMR spectrum of compound 2d	S25-S26
¹ H NMR spectrum of compound 2e	S27
¹³ C NMR spectrum of compound 2e	S28-S29
¹ H NMR spectrum of compound 2 f	S30
¹³ C NMR spectrum of compound 2f	S31-S32
¹ H NMR spectrum of compound 2g	S33
¹³ C NMR spectrum of compound 2 g	S34-S35
¹ H NMR spectrum of compound 2h	S36
¹³ C NMR spectrum of compound 2h	S37-S38
¹ H NMR spectrum of compound 2i	S39
¹³ C NMR spectrum of compound 2i	S40-S41
¹ H NMR spectrum of compound 3	S42

Experimental section

General methods

All reagents and solvents were commercially available and were used as received without further purification. The UV-vis spectra were measured in CHCl₃. IR spectra were taken with KBr pellets. ¹H and ¹³C NMR spectra were recorded on a 400, 500 or 600 MHz NMR spectrometer. Chemical shifts in ¹H NMR spectra were referenced to tetramethylsilane (TMS) at 0.00 ppm, yet chemical shifts in ¹³C NMR spectra were referenced to residual DMSO at 39.52 ppm. High-resolution mass spectrometry (HRMS) was performed by MALDI-TOF in positive-ion mode with 4-hydroxy- α -cyanocinnamic acid as the matrix.

General procedure for the preparation of fulleropyrrolines 2

 C_{60} (36.0 mg, 0.05 mmol) and a chosen β -substituted ethylamine **1** (1.00 mmol, 2.50 mmol for **1g**) were added to a 50 mL three-neck flask. After the mixed compounds were completely dissolved in 10 mL chlorobenzene by sonication, the resulting solution was put into an oil bath preset at 120 °C to heat and stir under air conditions. Thin-layer chromatography (TLC) was employed to carefully monitor the reaction and to stop the reaction at the designated time. Insoluble materials were first removed from the reaction mixture by filtering through a silica gel plug. After the solvent evaporation in vacuo was completed, the residue was separated on a silica gel column with carbon disulfide/dichloromethane as the eluent to afford first unreacted C_{60} and then fulleropyrrolines **2**. It should be noted that column chromatography should be carried out in dark due to the inherent light sensitive properties of fulleropyrrolidines

2, especially for those bearing electron-withdrawing groups, and the addition of drops of Et_3N to the silica gel would be highly efficient to avoid the decomposition and/or absorption of fulleropyrrolines **2** on the silica gel.

Fulleropyrroline 2a

According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1a (148 µL, 1.00 mmol) in chlorobenzene (10 mL) at 120 °C for 19 h afforded first unreacted C_{60} (9.0 mg, 25%) and then **2a** (21.4 mg, 43%) as an amorphous brown solid: mp >300 °C. ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.47 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 6.89 (s, 1H), 6.75 (d, J = 8.7 Hz, 2H), 6.74 (d, J = 8.5 Hz, 2H), 4.11 (t, J = 7.3 Hz, 2H), 3.72 (s, 3H), 3.71 (s, 3H), 3.20 (t, J = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CS₂/DMSO- d_6) (all 2C unless indicated) δ 157.35 (1C, aryl C), 157.12 (1C, aryl C), 148.76, 146.75 (1C), 146.23 (1C), 145.23, 145.12, 145.09, 144.99, 144.81 (4C), 144.55, 144.14, 144.00, 143.94 (6C), 143.46, 143.20, 142.04, 141.65, 141.58 (4C), 141.41, 141.23, 141.12, 141.05, 140.63, 138.96, 138.68, 135.34, 134.58 (1C), 134.42, 129.82 (1C, aryl C), 129.22 (aryl C), 128.87 (aryl C), 126.59 (1C, aryl C), 113.23 (4C, aryl C), 107.31 (1C), 88.11 (1C, sp³-C of C₆₀), 77.97 (1C, $sp^{3}-C$ of C₆₀), 54.07, 48.42 (1C), 35.53 (1C); FT-IR v/cm⁻¹ (KBr) 2923 (m), 2852 (w), 1607 (m), 1509 (m), 1459 (w), 1438 (w), 1430 (w), 1387 (w), 1354 (w), 1244 (s), 1176 (m), 1127 (w), 1037 (m), 823 (m), 526 (m); UV-vis (CHCl₃) λ_{max}/nm (log ϵ) 257 (5.14), 307 (4.73), 428 (3.91); MALDI-TOF MS m/z calcd for $C_{78}H_{19}NO_2$ [M + H]⁺ 1002.1494, found 1002.1479.

Fulleropyrroline 2b

According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1b (147 µL, 1.00 mmol) in chlorobenzene (10 mL) at 120 °C for 9 h afforded first unreacted C_{60} (19.4 mg, 54%) and then **2b** (14.8 mg, 30%) as an amorphous brown solid: mp >300 °C. ¹H NMR (600 MHz, CS₂/DMSO- d_6) δ 7.19-7.10 (m, 5H), 6.85-6.84 (m, 2H), 6.67 (dd, J = 8.4, 1.5 Hz, 1H), 6.62 (dd, J = 8.4, 1.6 Hz, 1H), 4.20 (t, J= 7.4 Hz, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 3.26 (t, J = 7.4 Hz, 2H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 2C unless indicated) δ 158.90 (1C, aryl C), 158.76 (1C, aryl C), 148.76, 146.86 (1C), 146.37 (1C), 145.38, 145.24 (4C), 145.13, 144.95 (4C), 144.70, 144.10 (4C), 144.08 (6C), 143.59, 143.33, 142.16, 141.79, 141.72, 141.70, 141.46, 141.41, 141.24, 141.19, 140.76, 139.55 (1C, aryl C), 138.92, 138.85, 136.14 (1C), 135.94 (1C, aryl C), 135.50, 134.53, 128.86 (1C, aryl C), 128.63 (1C, aryl C), 120.67 (1C, aryl C), 119.64 (1C, aryl C), 114.23 (1C, aryl C), 112.91 (1C, aryl C), 111.41 (1C, aryl C), 110.57 (1C, aryl C), 107.09 (1C), 88.49 (1C, sp³-C of C₆₀), 77.56 (1C, sp³-C of C₆₀), 54.03 (1C), 54.01 (1C), 48.00 (1C), 36.53 (1C); FT-IR v/cm⁻¹ (KBr) 2899 (w), 2827 (w), 1594 (s), 1488 (w), 1459 (w), 1423 (m), 1384 (w), 1355 (w), 1286 (w), 1259 (m), 1219 (w), 1163 (m), 1043 (m), 854 (w), 777 (m), 695 (m), 526 (m); UV-vis (CHCl₃) λ_{max}/nm (log ϵ) 256 (5.08), 308 (4.64), 428 (3.40); MALDI-TOF MS m/z calcd for C₇₈H₁₉NO₂ [M + H]⁺ 1002.1494, found 1002.1479.

Fulleropyrroline 2c

According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1c (169 µL, 1.00 mmol) in chlorobenzene (10 mL) at 120 °C for 8 h afforded first unreacted C_{60} (13.0 mg, 36%) and then 2c (23.0 mg, 43%) as an amorphous brown

solid: mp >300 °C. ¹H NMR (600 MHz, CS₂/DMSO- d_6) δ 7.10 (dd, J = 8.5, 2.0 Hz, 1H), 7.01 (d, J = 1.9 Hz, 1H), 6.96 (s, 1H), 6.84 (d, J = 1.7 Hz, 1H), 6.78 (dd, J = 8.4, 1.8 Hz, 1H), 6.71 (d, J = 8.5 Hz, 1H), 6.69 (d, J = 8.4 Hz, 1H), 4.16 (t, J = 7.1 Hz, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 3.70 (s, 3H), 3.69 (s, 3H), 3.18 (t, J = 7.1 Hz, 2H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 2C unless indicated) δ 148.77, 148.57 (1C), 148.50 (1C), 147.31 (1C), 147.07 (1C), 146.83 (1C), 146.32 (1C), 145.35, 145.21, 145.18, 145.08, 144.89 (4C), 144.59, 144.15, 144.02 (8C), 143.54, 143.28, 142.13, 141.75, 141.69, 141.64, 141.48, 141.33, 141.20, 141.14, 140.70, 138.90, 138.73, 135.32, 134.93 (1C), 134.41, 130.71 (1C, aryl C), 127.37 (1C, aryl C), 120.52 (1C, aryl C), 119.94 (1C, aryl C), 112.77 (1C, aryl C), 112.10 (1C, aryl C), 111.66 (1C, aryl C), 111.60 (1C, aryl C), 106.96 (1C), 88.24 (1C, sp³-C of C₆₀), 77.90 (1C, sp³-C of C₆₀), 54.88 (1C), 54.82 (1C), 54.75, 48.13 (1C), 36.01 (1C); FT-IR v/cm⁻¹ (KBr) 2920 (m), 2850 (w), 1618 (m), 1510 (s), 1454 (m), 1440 (m), 1411 (w), 1383 (w), 1351 (w), 1297 (w), 1252 (m), 1233 (s), 1177 (w), 1140 (m), 1101 (w), 1026 (s), 826 (m), 799 (m), 763 (m), 733 (m), 525 (m); UV-vis (CHCl₃) λ_{max}/nm (log ϵ) 258 (5.07), 309 (4.70), 428 (3.62); MALDI-TOF MS m/z calcd for C₈₀H₂₃NO₄ [M + H]⁺ 1062.1705, found 1062.1693.

Fulleropyrroline 2d

According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with **1d** (126 µL, 1.00 mmol) in chlorobenzene (10 mL) at 120 °C for 19 h afforded first unreacted C_{60} (13.8 mg, 38%) and then **2d** (18.0 mg, 38%) as an amorphous brown solid: mp >300 °C. ¹H NMR (400 MHz, CS₂/DMSO-*d*₆) δ 7.62 (d, *J* = 7.0 Hz, 2H),

7.30-7.17 (m, 8H), 7.10 (t, J = 6.3 Hz, 1H), 4.20 (t, J = 6.8 Hz, 2H), 3.30 (t, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CS₂/DMSO- d_6) (all 2C unless indicated) δ 148.75, 146.83 (1C), 146.33 (1C), 145.29, 145.20 (4C), 145.09, 144.91 (4C), 144.69, 144.07 (6C), 144.05 (4C), 143.55, 143.28, 142.14, 141.76, 141.69, 141.67, 141.43, 141.35, 141.20, 141.15, 140.74, 138.99, 138.83, 138.01 (1C, aryl *C*), 135.81 (1C, aryl *C*), 135.51, 134.54 (3C), 128.36 (aryl *C*), 127.92 (aryl *C*), 127.77 (aryl *C*), 127.24 (aryl *C*), 125.90 (1C, aryl *C*), 125.17 (1C, aryl *C*), 107.57 (1C), 88.40 (1C, sp³-*C* of C₆₀), 48.25 (1C), 36.51 (1C); FT-IR ν /cm⁻¹ (KBr) 2915 (m), 2849 (w), 1612 (s), 1593 (s), 1493 (m), 1451 (m), 1425 (m), 1392 (m), 1355 (m), 1180 (m), 1163 (m), 1073 (w), 872 (m), 751 (s), 695 (s), 526 (s); UV-vis (CHCl₃) λ_{max} /nm (log ϵ) 257 (5.21), 307 (4.79), 428 (3.65); MALDI-TOF MS *m*/*z* calcd for C₇₆H₁₅N [M + H]⁺ 942.1283, found 942.1270.

Fulleropyrroline 2e

According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1e** (131 µL, 1.00 mmol) in chlorobenzene (10 mL) at 120 °C for 15 h afforded first unreacted C₆₀ (20.3 mg, 56%) and then **2e** (12.0 mg, 25%) as an amorphous brown solid: mp >300 °C. ¹H NMR (600 MHz, CS₂/CDCl₃) δ 7.61 (dd, *J* = 8.9, 5.5 Hz, 2H), 7.30 (dd, *J* = 8.5, 5.5 Hz, 2H), 7.02-6.99 (m, 4H), 6.89 (s, 1H), 4.20 (t, *J* = 7.4 Hz, 2H), 3.29 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) (all 2C unless indicated) δ 160.67 (d, *J*_{C-F} = 244 Hz, 1C, aryl *C*), 160.27 (d, *J*_{C-F} = 246 Hz, 1C, aryl *C*), 148.52, 146.83 (1C), 146.33 (1C), 145.20, 145.13, 145.08, 145.07, 144.92 (4C), 144.68, 144.04 (6C), 143.91 (4C), 143.52, 143.26, 142.13, 141.75, 141.70, 141.61,

141.39, 141.30, 141.18, 141.12, 140.73, 139.08, 138.81, 135.90 (1C), 135.44, 134.53, 133.81 (1C, aryl *C*), 130.57 (1C, aryl *C*), 129.92 (d, $J_{C-F} = 5$ Hz, aryl *C*), 129.08 (aryl *C*), 114.67 (aryl *C*), 114.51 (aryl *C*), 106.671 (1C), 88.28 (1C, sp³-*C* of C₆₀), 77.66 (1C, sp³-*C* of C₆₀), 48.21 (1C), 35.53 (1C); FT-IR *v*/cm⁻¹ (KBr) 2914 (w), 2862 (w), 1624 (s), 1602 (s), 1508 (s), 1453 (w), 1384 (m), 1354 (m), 1228 (s), 1188 (m), 1156 (m), 1012 (w), 826 (s), 526 (m); UV-vis (CHCl₃) λ_{max} /nm (log ϵ) 257 (5.25), 306 (4.79), 428 (3.65); MALDI-TOF MS *m*/*z* calcd for C₇₆H₁₃F₂N [M + H]⁺ 978.1094, found 978.1082.

Fulleropyrroline 2f

According to the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1f** (140 µL, 1.00 mmol) in chlorobenzene (10 mL) at 120 °C for 11.5 h afforded first unreacted C₆₀ (23.2 mg, 64%) and then **2f** (10.2 mg, 20%) as an amorphous brown solid: mp >300 °C. ¹H NMR (600 MHz, CS₂/CDCl₃) δ 7.59 (d, *J* = 8.8 Hz, 2H), 7.29-7.25 (m, 6H), 6.93 (s, 1H), 4.22 (t, *J* = 7.4 Hz, 2H), 3.29 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (125 MHz, CS₂/DMSO-*d*₆) (all 2C unless indicated) δ 148.36, 146.83 (1C), 146.35 (1C), 145.21, 145.15, 145.10, 145.04, 144.93 (4C), 144.67, 144.10, 144.05 (4C), 143.88, 143.82, 143.52, 143.28, 142.14, 141.77, 141.71, 141.62, 141.35 (4C), 141.19, 141.14, 140.73, 139.01, 138.81, 136.68 (1C, aryl *C*), 136.62 (1C), 135.43, 134.60, 133.34 (1C, aryl *C*), 127.83 (aryl *C*), 130.42 (1C, aryl *C*), 129.97 (aryl *C*), 128.15 (aryl *C*), 127.91 (aryl *C*), 127.83 (aryl *C*), 106.15 (1C), 88.44 (1C, sp³-*C* of C₆₀), 47.80 (1C), 35.69 (1C); FT-IR *v*/cm⁻¹ (KBr) 2919 (m), 2851 (w), 1610 (s), 1510 (w), 1489 (s), 1426 (w), 1405 (m), 1354 (m), 1225 (w), 1180 (m),

1163 (m), 1128 (w), 1091 (s), 1013 (m), 872 (w), 820 (m), 806 (m), 526 (s); UV-vis (CHCl₃) λ_{max}/nm (log ϵ) 257 (5.02), 312 (4.57), 427 (3.29); MALDI-TOF MS m/z calcd for C₇₆H₁₃Cl₂N [M + H]⁺ 1010.0503, found 1010.0490.

Fulleropyrroline 2g

According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1g (377 µL, 2.50 mmol) in chlorobenzene (10 mL) at 120 °C for 10 h afforded first unreacted C_{60} (24.9 mg, 69%) and then 2g (13.6 mg, 25%) as an amorphous brown solid: mp >300 °C. ¹H NMR (600 MHz, CS₂/CDCl₃) δ 7.56 (d, J = 8.5 Hz, 1H), 7.46 (d, J = 1.9 Hz, 1H), 7.36 (d, J = 8.3 Hz, 1H), 7.27 (d, J = 1.7 Hz, 1H), 7.22-7.21 (m, J = 1.7 Hz, 1Hz), 7.22-7.21 (m, J = 1.7 Hz), 7.22-7.21 (m, J = 1.7 Hz),1H), 7.17 (dd, J = 8.5, 1.8 Hz, 1H), 6.94 (s, 1H), 4.25 (t, J = 7.1 Hz, 2H), 3.39 (t, J = 7.1 Hz, 3H), 3H, 3H), 3H, 3 7.1 Hz, 2H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 2C unless indicated) δ 147.94, 146.77 (1C), 146.26 (1C), 145.10, 145.04, 144.94, 144.82 (4C), 144.59, 144.45, 143.95 (8C), 143.40, 143.14, 142.80, 142.05, 141.59 (3C), 141.55 (3C), 141.31, 141.10 (4C), 140.95, 140.64, 139.21, 138.53, 137.77 (1C, aryl C), 136.11 (1C), 135.35, 134.34, 134.29 (1C, aryl C), 134.15 (1C, aryl C), 133.20 (1C, aryl C), 132.85 (1C, aryl C), 132.56 (1C, aryl C), 132.18 (1C, aryl C), 130.85 (1C, aryl C), 129.00 (1C, aryl C), 128.34 (1C, aryl C), 126.55 (1C, aryl C), 126.02 (1C, aryl C), 102.37 (1C), 87.40 (1C, sp³-C of C₆₀), 78.63 (1C, sp³-C of C₆₀), 45.23 (1C), 33.77 (1C); FT-IR v/cm⁻¹ (KBr) 2918 (w), 2852 (w), 1624 (w), 1579 (m), 1469 (w), 1453 (m), 1428 (m), 1375 (w), 1352 (w), 1241 (w), 1180 (w), 1162 (w), 1123 (m), 1098 (m), 1049 (w), 1033 (w), 865 (s), 818 (s), 782 (w), 745 (s), 525 (s); UV-vis (CHCl₃) λ_{max}/nm $(\log \epsilon)$ 258 (5.36), 309 (4.77), 428 (3.54); MALDI-TOF MS *m*/*z* calcd for C₇₆H₁₁Cl₄N

Fulleropyrroline 2h

According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with **1h** (117 µL, 1.00 mmol) in chlorobenzene (10 mL) at 120 °C for 24 h afforded first unreacted C_{60} (14.2 mg, 39%) and then **2h** (7.5 mg, 16%) as an amorphous brown solid: mp >300 °C. ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.28 (s, 1H), 7.14-7.13 (m, 2H), 7.04 (d, J = 5.1 Hz, 1H), 6.93 (d, J = 2.4 Hz, 1H), 6.91-6.88 (m, 2H), 4.26 (t, J =7.1 Hz, 2H), 3.52 (t, J = 7.1 Hz, 2H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 2C unless indicated) δ 148.24, 147.00 (1C), 146.48 (1C), 145.63, 145.39, 145.28, 145.23, 145.07 (4C), 144.93, 144.41, 144.30, 144.20 (4C), 144.04, 143.72, 143.42, 142.26, 141.90, 141.84, 141.72, 141.53 (4C), 141.33 (4C), 140.90, 139.95 (1C, aryl C), 139.10, 138.95, 137.34 (1C), 135.73, 135.67 (1C, aryl C), 134.74, 126.72 (1C, aryl C), 126.52 (1C, aryl C), 125.30 (1C, aryl C), 123.72 (1C, aryl C), 122.70 (1C, aryl C), 121.59 (1C, aryl C), 101.95 (1C), 88.06 (1C, sp³-C of C₆₀), 77.15 (1C, sp³-C of C₆₀), 48.23 (1C), 30.49 (1C); FT-IR v/cm⁻¹ (KBr) 2916 (m), 2848 (w), 1611 (s), 1538 (w), 1511 (w), 1428 (m), 1388 (m), 1362 (w), 1259 (w), 1217 (m), 1182 (m), 1164 (m), 1075 (w), 812 (w), 800 (m), 691 (s), 526 (s); UV-vis (CHCl₃) λ_{max}/nm (log ϵ) 258 (5.39), 313 (4.73), 427 (3.63); MALDI-TOF MS m/z calcd for $C_{72}H_{11}NS_2$ [M + H]⁺ 954.0411, found 954.0400.

Fulleropyrroline 2i

According to the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1i (355 μ L, 2.50 mmol) in chlorobenzene (10 mL) at 120 °C for 29 h afforded first

unreacted C_{60} (14.4 mg, 40%) and then 2i (14.6 mg, 30%) as an amorphous brown solid: mp >300 °C. ¹H NMR (500 MHz, CS₂/DMSO- d_6) δ 7.38 (d, J = 7.3 Hz, 2H), 7.25 (t, J = 7.6 Hz, 2H), 7.17-7.09 (m, 5H), 7.04 (t, J = 7.0 Hz, 1H), 6.40 (s, 1H), 3.95 (s, 2H), 3.77 (t, J = 7.6 Hz, 2H), 2.80 (t, J = 7.6 Hz, 2H), 2.25-2.19 (m, 2H); ¹³C NMR (125 MHz, CS₂/DMSO- d_6) (all 2C unless indicated) δ 148.99, 146.89 (1C), 146.32 (1C), 145.90, 145.22, 145.09, 145.03, 144.98, 144.90, 144.88, 144.80, 144.34, 144.19, 144.07 (4C), 143.59, 143.33, 142.15, 141.71, 141.68, 141.66, 141.50, 141.27, 141.17, 141.13, 140.78, 140.24 (1C, aryl C), 139.32, 138.63, 138.34 (1C, aryl C), 135.52, 134.51, 133.42 (1C), 128.73 (aryl C), 127.78 (aryl C), 127.74 (aryl C), 127.70 (aryl C), 125.79 (1C, aryl C), 125.30 (1C, aryl C), 107.78 (1C), 87.69 (1C, sp³-C of C₆₀), 78.36 (1C, sp³-C of C₆₀), 47.02 (1C), 33.52 (1C), 32.62 (1C), 31.15 (1C); FT-IR ν/cm^{-1} ¹ (KBr) 3057 (w), 3022 (w), 2916 (m), 2847 (w), 1648 (m), 1602 (w), 1493 (m), 1451 (m), 1427 (m), 1383 (w), 1181 (m), 1163 (m), 1120 (m), 1074 (w), 1029 (w), 906 (w), 743 (m), 697 (s), 526 (s); UV-vis (CHCl₃) λ_{max}/nm (log ϵ) 256 (5.18), 307 (4.63), 429 (3.56); MALDI-TOF MS m/z calcd for C₇₈H₁₉N [M + H]⁺970.1596, found 970.1584.

Transformation of 2d to 3 in the presence of TsOH·H₂O

By the same procedure as for the preparation of fulleropyrrolines **2**, the reaction of fulleropyrroline **2d** (18.8 mg, 0.02 mmol), 1,3-propanediol (3 μ L, 0.04 mmol) and TsOH·H₂O (19.0 mg, 0.10 mmol) in chlorobenzene (6 mL) at 120 °C for 0.5 h afforded C₆₀-fused dioxygenated ring compound **3**¹ (11.0 mg, 69%) together with a trace amount of unreacted fulleropyrroline **2d**.

Transformation of 2d to C₆₀ in the presence of TsOH·H₂O

By the same procedure as for the preparation of fulleropyrrolines **2**, the reaction of fulleropyrroline **2d** (18.8 mg, 0.02 mmol) and TsOH·H₂O (7.6 mg, 0.04 mmol) in chlorobenzene (6 mL) at 120 °C for 0.5 h afforded C₆₀ (13.2 mg, 92%) together with a trace amount of unreacted fulleropyrroline **2d**.

Notes and references

(a) F.-B. Li, X. You, T.-X. Liu and G.-W. Wang, Org. Lett., 2012, 14, 1800; (b)
W.-Q. Zhai, S.-P. Jiang, R.-F. Peng, B. Jin and G.-W. Wang, Org. Lett., 2015, 17,
1862. (c) X.-F. Zhang, F.-B. Li, J. Wu, J.-L. Shi, Z. Liu and L. Liu, J. Org. Chem.,
2015, 80, 6037; (d) J. Wu, F.-B. Li, X.-F. Zhang, J.-L. Shi and L. Liu, RSC Adv.,
2015, 5, 30549.

S41

