Electronic supplementary information (ESI)

Gold nanoparticles optical properties induced by water and ionic liquid (bmimBF4) inside cationic reverse micelles.

Diana Blach* and Fernando Martínez. *

Table S1. Apparent diameter $\left(\mathrm{d}_{\text {app }}\right)$ values for bmimBF $4 / \mathrm{BHDC}$ /toluene and water/BHDC/toluene RMs obtained at $25^{\circ} \mathrm{C}$ varying W and $[\mathrm{BHDC}]=0.1 \mathrm{M}$.

bmimbF $_{4} / \mathbf{B H D C} /$ toluene		water/BHDC/toluene	
$\mathbf{W}_{\mathbf{s}}$	$\left.\mathbf{d}_{\text {app }} \mathbf{(n m}\right)$	$\mathbf{W}_{\mathbf{0}}$	$\mathbf{d}_{\text {app }} \mathbf{(n m)}$
0,3	$3,2 \pm 0,2$	3	$3,5 \pm 0,5$
0,5	$5,3 \pm 0,1$	5	$4,1 \pm 0,3$
0,7	$8,4 \pm 0,1$	6	$4,6 \pm 0,1$
1	$10,2 \pm 0,3$	8	$5,5 \pm 0,6$
1,2	$15,2 \pm 0,5$	10	$6,7 \pm 0,1$

Figure S1. Apparent diameter $\left(\mathrm{d}_{\text {app }}\right)$ values for $\mathrm{bmimBF}_{4} / \mathrm{BHDC} /$ toluene ($(\circ$) and water/BHDC/toluene (\bullet) at different W obtained at $25^{\circ} \mathrm{C}$ and $[\mathrm{BHDC}]=0.1 \mathrm{M}$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra for bmimBF $4 / \mathrm{BHDC} /$ toluene RMs at different W_{s} values and $[B H D C]=0.1 \mathrm{M}$. Labels refer to Scheme 1 . A capillary tube containing $\mathrm{D}_{2} \mathrm{O}$ was used as a frequency 'lock'", the solvent signal is evident, indicated by *.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra for water/BHDC/toluene RMs at different W_{0} values and $[B H D C]=0.1 \mathrm{M}$. Labels refer to Scheme 1 . A capillary tube containing $\mathrm{D}_{2} \mathrm{O}$ was used as a frequency 'lock'", the solvent signal is evident, indicated by *.

Figure S4. A). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of bmimBF_{4} in BHDC RMs and B$) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts of $\mathrm{C} 2-\mathrm{H} \mathrm{bmim}{ }^{+}$in $\mathrm{bmimBF}_{4} / \mathrm{BHDC} /$ toluene RMs at different bmimBF ${ }_{4}$ contents $\left(\mathrm{W}_{\mathrm{s}}\right)$. $[B H D C]=0.1 \mathrm{M}$. The corresponding value for neat $\mathrm{bmimBF}_{4}(---)$ is included for comparison.

Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts of BHDC protons in $\mathrm{bmimBF}_{4} / \mathrm{BHDC} /$ toluene ($(\circ$) and water/BHDC/toluene (\bullet) at different $\mathrm{W} . \mathrm{A}$). β protons and B). α protons labels refer to Scheme 1. $[\mathrm{BHDC}]=0.1 \mathrm{M}$.

Table S2. The interplanar gold crystal spacing (\AA) and its corresponding HKL crystallographic values from the JCPDS-PDF 04-0784.

SYMMETRY. CUBIC
DIHKL. 2.3550 100. $1.00 \quad 1.00 \quad 1.00$
DIHKL. $2.0390 \quad 52 . \quad 2.00 \quad 0.00 \quad 0.00$
DIHKL. $1.1774 \quad 12 . \quad 2.00 \quad 2.00 \quad 2.00$

