Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information For

Fluorinated *meso*-tetraaryl Pt(II)-porphyrins: Structure, Photophysical, Electrochemical and Phosphorescent Oxygen Sensing Studies

Chellaiah Arunkumar^{a*}, Fasalu Rahman Kooriyaden^a, Xiaochen Zhang^b, Subramaniam Sujatha^a and Jianzhang Zhao^b

^aBioinorganic Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, India - 673 601. E-mail: arunkumarc@nitc.ac.in ^bState Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E 208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P.R. China.

Contents

Figure S1. ¹H NMR spectrum of PtTPP, F1.

Figure S2. ¹H NMR spectrum of PtT(2,3,4,5,6-PFP)P, **F2**.

Figure S3. ¹H NMR spectrum of PtT(2,6-DFP)P, F3.

Figure S4. ¹H NMR spectrum of PtT(3,5-DFP)P, F4.

Figure S5. ¹H NMR spectrum of PtT(2,4,6-TFP)P, F5.

Figure S6. ¹H NMR spectrum of PtT(4-TFMP)P, F7.

Figure S7. ¹H NMR spectrum of PtT(3,5-DTFMP)P, F8.

Figure S8. Emission spectra of PtTPP, **F1** in solution under N₂, air and O₂. ($\lambda_{ex} = 402 \text{ nm}$)

Figure S9. Emission spectra of PtTPP, **F2** in solution under N₂, air and O₂. ($\lambda_{ex} = 392 \text{ nm}$)

Figure S10. Emission spectra of PtTPP, **F3** in solution under N₂, air and O₂. ($\lambda_{ex} = 395$ nm)

Figure S11. Emission spectra of PtTPP, F4 in solution under N₂, air and O₂. ($\lambda_{ex} = 399$ nm)

Figure S12. Emission spectra of PtTPP, F5 in solution under N₂, air and O₂. ($\lambda_{ex} = 393$ nm)

Figure S13. Emission spectra of PtTPP, **F6** in solution under N₂, air and O₂. ($\lambda_{ex} = 402 \text{ nm}$)

Figure S14. Emission spectra of PtTPP, F7 in solution under N₂, air and O₂. ($\lambda_{ex} = 401$ nm)

Figure S15. Phosphorescent emission change of the complex, F1 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 402$ nm, $\lambda_{em} = 666$ nm.

Figure S16. Phosphorescent emission change of the complex, **F2** films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 392$ nm, $\lambda_{em} = 649$ nm.

Figure S17. Phosphorescent emission change of the complex, F3 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 400$ nm, $\lambda_{em} = 644$ nm.

Figure S18. Phosphorescent emission change of the complex, **F4** films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 395$ nm, $\lambda_{em} = 643$ nm.

Figure S19. Phosphorescent emission change of the complex, F5 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 393$ nm, $\lambda_{em} = 646$ nm.

Figure S20. Phosphorescent emission change of the complex, F6 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 402$ nm, $\lambda_{em} = 650$ nm.

Figure S21. Phosphorescent emission change of the complex, F7 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 401$ nm, $\lambda_{em} = 655$ nm.

Figure S22. (a) Dynamic response of **F1** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 402 \text{ nm}, \lambda_{em} = 666 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F1** based on the two site model (eqn(1)).

Figure S23. (a) Dynamic response of **F2** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 392 \text{ nm}, \lambda_{em} = 649 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F2** based on the two site model (eqn(1)).

Figure S24. (a) Dynamic response of **F3** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 395 \text{ nm}, \lambda_{em} = 643 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F3** based on the two site model (eqn(1)).

Figure S25. (a) Dynamic response of **F4** films vs. small steps of variation of O_2 partial pressure. $\lambda_{ex} = 399 \text{ nm}, \lambda_{em} = 646 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F4** based on the two site model (eqn(1)).

Figure S26. (a) Dynamic response of **F5** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 393 \text{ nm}, \lambda_{em} = 646 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F5** based on the two site model (eqn(1)).

Figure S27. (a) Dynamic response of **F6** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 402 \text{ nm}, \lambda_{em} = 650 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F6** based on the two site model (eqn(1)).

Figure S28. (a) Dynamic response of **F7** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 401 \text{ nm}, \lambda_{em} = 655 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F7** based on the two site model (eqn(1)).

Figure S1. ¹H NMR spectrum of PtTPP, F1.

Figure S2. ¹H NMR spectrum of PtT(2,3,4,5,6-PFP)P, F2.

Figure S3. ¹H NMR spectrum of PtT(2,6-DFP)P, F3.

Figure S4. ¹H NMR spectrum of PtT(3,5-DFP)P, F4.

Figure S5. ¹H NMR spectrum of PtT(2,4,6-TFP)P, F5.

Figure S6. ¹H NMR spectrum of PtT(4-TFMP)P, F7.

Figure S7. ¹H NMR spectrum of PtT(3,5-DTFMP)P, F8.

Figure S8. Emission spectra of PtTPP, F1 in solution under N₂, air and O₂. ($\lambda_{ex} = 402 \text{ nm}$)

Figure S9. Emission spectra of PtTPP, F2 in solution under N₂, air and O₂. ($\lambda_{ex} = 392 \text{ nm}$)

Figure S10. Emission spectra of PtTPP, F3 in solution under N₂, air and O₂. (λ_{ex} = 395 nm)

Figure S11. Emission spectra of PtTPP, F4 in solution under N_2 , air and O_2 . ($\lambda_{ex} = 399$ nm)

Figure S12. Emission spectra of PtTPP, F5 in solution under N_2 , air and O_2 . ($\lambda_{ex} = 393$ nm)

Figure S13. Emission spectra of PtTPP, F6 in solution under N₂, air and O₂. ($\lambda_{ex} = 402 \text{ nm}$)

Figure S14. Emission spectra of PtTPP, F7 in solution under N_2 , air and O_2 . ($\lambda_{ex} = 401 \text{ nm}$)

Figure S15. Phosphorescent emission change of the complex, F1 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 402$ nm, $\lambda_{em} = 666$ nm.

Figure S16. Phosphorescent emission change of the complex, F2 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 392$ nm, $\lambda_{em} = 649$ nm.

Figure S17. Phosphorescent emission change of the complex, F3 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 400$ nm, $\lambda_{em} = 644$ nm.

Figure S18. Phosphorescent emission change of the complex, F4 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 395$ nm, $\lambda_{em} = 643$ nm.

Figure S19. Phosphorescent emission change of the complex, F5 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 393$ nm, $\lambda_{em} = 646$ nm.

Figure S20. Phosphorescent emission change of the complex, F6 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 402$ nm, $\lambda_{em} = 650$ nm.

Figure S21. Phosphorescent emission change of the complex, F7 films vs. O_2/N_2 saturation switch. $\lambda_{ex} = 401$ nm, $\lambda_{em} = 655$ nm.

Figure S22. (a) Dynamic response of **F1** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 402 \text{ nm}, \lambda_{em} = 666 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F1** based on the two site model (eqn(1)).

Figure S23. (a) Dynamic response of **F2** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 392 \text{ nm}, \lambda_{em} = 649 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F2** based on the two site model (eqn(1)).

Figure S24. (a) Dynamic response of **F3** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 395 \text{ nm}, \lambda_{em} = 643 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F3** based on the two site model (eqn(1)).

Figure S25. (a) Dynamic response of **F4** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 399 \text{ nm}, \lambda_{em} = 646 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F4** based on the two site model (eqn(1)).

Figure S26. (a) Dynamic response of **F5** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 393 \text{ nm}, \lambda_{em} = 646 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F5** based on the two site model (eqn(1)).

Figure S27. (a) Dynamic response of **F6** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 402 \text{ nm}, \lambda_{em} = 650 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F6** based on the two site model (eqn(1)).

Figure S28. (a) Dynamic response of **F7** films vs. small steps of variation of O₂ partial pressure. $\lambda_{ex} = 401 \text{ nm}, \lambda_{em} = 655 \text{ nm};$ (b) Fitting of the oxygen sensing property of the IMPEK-C films of complex, **F7** based on the two site model (eqn(1)).

τ	N_2 / μs	air / ns	O_2/ns
F1	46.96	377.94	34.27
F2	43.86	492.72	68.95
F3	35.09	500.84	49.29
F 4	44.30	430.96	53.90
F5	55.42	8.86	4.81
F6	43.48	455.62	36.36
F7	48.15	386.34	69.21
F8	41.16	486.04	82.78

Table S1. Luminescent lifetime for complexes, F1-F8^a.

 $^a2.0\times 10^{-6}\,mol~L^{-1}$ of the complexes in chloroform at 20 °C.