Electronic Supplementary Information

A new system for cyclohexane functionalization employing iron(III) catalysts and trichloroisocianuric acid

C. A. Gomes,^a Leonardo M. Lube,^b Christiane Fernandes,^a Roberto W. A. Franco,^c Jackson A. L. C. Resende,^d Adolfo Horn Jr.^{a*}

Experimental:

Catalytic studies: The catalytic assays were carried out in a system containing a solution of the catalyst (**1** or **2**) (7.0×10^{-4} mol dm⁻³) in CH₃CN (4.62 cm³), cyclohexane (0.38 cm³) and TCCA in a ratio 1:1000:333 or 1:1000:33. The reactions were conducted during 24 h at 25°C or 50°C. A sample (0.4 cm³) was taken and 0.02 cm³ of 1-chloropropanol (internal standard) was added. Quantitative analyses of the products were executed in a Varian GC-430-FID equipped with a 30 m×0.25 mm (0.25 µm i.d.) CP-WAX 58 column. Product identification was performed by injecting a real sample of chlorocyclohexane purchased for Sigma-Aldrich. Furthermore, similar reactions in the absence of iron(III) catalysts and in the presence of FeCl₃ were conducted as blank reaction.

EPR Spectroscopy: Electron paramagnetic resonance (EPR) spectra were obtained using a Bruker E500 spectrometer with a high sensitive cylindrical cavity, operating in the X-band (9 GHz), at 100 K (-173°C), with a 10.0 mW microwave power, a 100 kHz modulation frequency and a 5 G modulation amplitude. Spectra were measured from samples containing only the catalysts and the catalyst in the presence of TCCA at ratios of 1:10 and 1:100.

X-ray diffraction : The single crystal X-ray diffraction data of compound was collected at room temperature on a Bruker D8 Venture diffractometer. The structure was solved by direct methods using Intrinsic Phasing and the model was refined applying the full-matrix least-squares method using SHELXL. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms are placed at calculated positions and refined using a riding model.

ESI-(+)-MS: Full scan mass spectra (MS mode) were obtained on a MicroTOF LC Bruker Daltonics spectrometer equipped with an electrospray source operating in positive ion mode. Samples were dissolved in CH₃CN and were injected in the apparatus by direct infusion.

Table ESI 1. Crystal data and structure refinement for iron complex $[Fe(HBPCINOL)(CI)_2, 2]$.

Empirical formula	C ₁₈ H ₂₂ Cl ₃ FeN ₃ O _{2.5}	
Formula weight	482.58	
Temperature/K	297.79	
Crystal system	orthorhombic	
Space group	Pnma	
a/Å	20.7516(16)	
b/Å	28.169(2)	
c/Å	7.3729(6)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å ³	4309.8(6)	
Z	4	
$\rho_{calc}g/cm^3$	1.488	
µ/mm ⁻¹	1.092	
F(000)	1984.0	
Crystal size/mm ³	$0.377 \times 0.142 \times 0.06$	
Radiation	MoK α ($\lambda = 0.71073$)	
2Θ range for data collection/ ^c	² 4.876 to 50.886	
Index ranges	$\text{-}23 \leq h \leq 25, \text{-}33 \leq k \leq 33, \text{-}8 \leq l \leq 8$	
Reflections collected	37930	
Independent reflections	$4039 [R_{int} = 0.0870, R_{sigma} = 0.0442]$	
Data/restraints/parameters	4039/0/258	
Goodness-of-fit on F ²	1.199	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1218$, $wR_2 = 0.2875$	
Final R indexes [all data]	$R_1 = 0.1442, wR_2 = 0.2980$	
Largest diff. peak/hole / e Å ⁻³ 1.75/-0.68		

Table ESI2. Main bond Lengths(Å) for [Fe(HBPCINOL)(CI)₂, **2**.

Fe1- Cl1	2.310(4)
Fe1- Cl2	2.299(3)
Fe1- 01	1.865(8)
Fe1- O2	2.175(8)
Fe1- N1	2.218(9)
Fe1- N2	2.190(9)

Table ESI3. Main bond $angles(^{\circ})$ for [Fe(HBPCINOL)(CI)₂, **2**.

Cl2-Fe1-Cl1	100.52(14)
O1-Fe1-Cl1	98.1(3)
O1-Fe-Cl2	99.8(3)
01-Fe-O2	90.2(4)
O1-Fe-N1	88.5(3)
O1-Fe-N2	163.7(3)
O2-Fe-Cl1	167.0(2)
O2-Fe-Cl2	87.8(2)
O2-Fe-N1	75.5(3)
O2-Fe-N2	81.6(3)
N1-Fe-Cl1	94.6(3)
N1-Fe-Cl2	161.5(3)
N2-Fe-Cl1	87.8(3)
N2-Fe-Cl2	93.9(3)
N2-Fe-N1	75.9(3)

Figure ESI 1. Time course of cyclohexane chlorination catalyzed by **1**, **2** and FeCl3 in acetonitrile at 25 (left) and 50°C (right).

Figure ESI 2. Experimental (top) and simulated (bottom) isotopic patterns for the ion with m/z 307observed in the ESI-(+)-MS spectrum of **2** and a proposal of structure for the cation with chemical composition $C_{16}H_{20}CIN_2O_2$.

Figure ESI 3. Experimental (top) and simulated (bottom) isotopic patterns for the ion with m/z 396 observed in the ESI-(+)-MS spectrum of **2** and a proposal of structure for the cation with chemical composition $C_{16}H_{18}Cl_2FeN_2O_2$.

Figure ESI 4. Experimental (top) and simulated (bottom) isotopic patterns for the ion with m/z 666 observed in the ESI-(+)-MS spectrum of **2** and a proposal of structure for the cation with chemical composition $C_{32}H_{36}Cl_2FeN_4O_4$.

Figure ESI 5. Experimental (top) and simulated (bottom) isotopic patterns for the ion with m/z 755 observed in the ESI-(+)-MS spectrum of **2** and a proposal of structure for the cation with chemical composition $C_{32}H_{34}Cl_3Fe_2N_4O_4$.

Figure ESI 6. Experimental (top) and simulated (bottom) isotopic patterns for the ion with m/z 213 observed in the ESI-(+)-MS spectrum of **2+TCCA** and a proposal of structure for the cation with chemical composition $C_{10}H_{14}CIN_2O$.

Figure ESI 7. Experimental (top) and simulated (bottom) isotopic patterns for the ion with m/z 235 observed in the ESI-(+)-MS spectrum of **2+TCCA** and a proposal of structure for the cation with chemical composition $C_9H_{13}Cl_2N_2O$.

Figure ESI 8. Experimental (top) and simulated (bottom) isotopic patterns for the ion with m/z 289 observed in the ESI-(+)-MS spectrum of **2+TCCA** and a proposal of structure for the cation with chemical composition $C_9H_{11}Cl_2FeN_2O$.

Figure ESI 9. Experimental (top) and simulated (bottom) isotopic patterns for the ion with m/z 289 observed in the ESI-(+)-MS spectrum of **2+TCCA** and a proposal of structure for the cation with chemical composition $C_9H_{14}CI_3FeN_2O$.

Figure ESI 10. Experimental (top) and simulated (middle and bottom) isotopic patterns for the ions with m/z 403 and 409 observed in the ESI-(+)-MS spectrum of **2+TCCA** and proposal of structures for the cations with chemical composition $C_{13}H_9CI_4FeN_2O$ (403) and $C_{16}H_{17}CI_4N_2O_2$ (409).

Figure ESI 11. Experimental (top) and simulated (bottom) isotopic patterns for the ion with m/z 423 observed in the ESI-(+)-MS spectrum of **2+TCCA** and a proposal of structure for the cation with chemical composition $C_{13}H_{11}Cl_4FeN_2O_2$.