Supporting Information of

Synthesis, Characterisation and Catalytic Use of Iron Porphyrin Amino Ester Conjugates.

Daniela Maria Carminati,^[a] Daniela Intrieri,^[a] Stéphane Le Gac,^[b] Bernard Boitrel,^{*[b]} Lucio Toma,^{*[c]} Laura Legnani^[c] and Emma Gallo^{*[a]}

[a] D. M. Carminati, D. Intrieri, E. Gallo, Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan (Italy), E-mail: <u>emma.gallo@unimi.it</u>. [b] S. Le Gac, B. Boitrel, Institut des Sciences Chimiques de Rennes, Université de Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes Cedex (France). [c] L. Toma, L. Legnani, Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia (Italy).

Table of Contents

NMR Spectra	page 2
Structural data	page 9
Computational data	page 10

1. NMR spectra

Compound 3, NMR spectra

¹H NMR (500 MHz, CDCl₃, 298K): δ 8.96 (m, 4H, H_{βpyr}), 8.93 (d, 2H, *J*=4.4 Hz, H_{βpyr}), 8.82 (s, 2H, H_{βpyr}), 8.83 (d, 2H, *J*=7.6 Hz, H³), 8.66 (d, 2H, *J*=7.6 Hz, H³), 8.12 (d, 4H, *J*=7.6 Hz, H⁶ and H⁶), 7.91 (m, 4H, H⁴ and H⁴), 7.60 (m, 4H, H⁵ and H⁵), 7.30 (d, 2H, *J*=7.6 Hz, H⁹), 7.20 (d, 2H, *J*=7.6 Hz, H⁹), 7.16 (s, 2H, *H*CONH), 7.04 (s, 2H, *H*CONH²), 6.81 (t, 2H, *J*=7.6 Hz, H¹⁰), 6.77 (d, 2H, *J*=7.6 Hz, H¹¹), 6.74 (t, 2H, *J*=7.7 Hz, H¹⁰), 6.62 (d, 2H, *J*=7.6 Hz, H¹¹), 4.41 (s, 2H, H¹³), 4.03 (s, 2H, H¹³), 2.08 (d, 2H, *J*²=13.1 Hz, H^{14A}), 1.82 (q, 2H, *J*=6.8 Hz, H¹⁵), 1.26 (s, 18H, H¹⁷), 0.87 (d, 2H, *J*²=13.0 Hz, H^{14B}), 0.63 (bs, 4H, H^{14'A} and H^{14'B}), -0.80 (d, 6H, *J*=6.8 Hz, H¹⁶), -2.34 ppm (s, 2H, -NH₂).

¹³C NMR (125 MHz, CDCl₃, 298K): δ 171.7, 165.0, 164.7, 139.0, 138.9, 138.8, 138.3, 134.2, 134.0, 133.6, 132.2, 131.7, 131.2, 130.6, 130.5, 128.6, 128.5, 126.9, 126.3, 124.2, 123.8, 123.7, 123.4, 121.9, 121.6, 115.5, 115.4, 80.8, 57.5, 52.4, 31.7, 28.1, 10.1 ppm.

Compound **3**, COSY 2D NMR spectrum (500 MHz, CDCl₃, 298 K)

Compound 4, NMR spectra

¹H NMR (400 MHz, CDCl₃, 298K): δ 9.19 (d, 2H, *J*=4.9 Hz, H_{βpyr}), 9.15 (d, 2H, *J*=5.0 Hz, H_{βpyr}), 8.99 (s, 2H, H_{βpyr}), 8.88 (d, 2H, *J*=8.2 Hz, H³), 8.81 (s, 2H, H_{βpyr}), 8.60 (d, 2H, *J*=8.1 Hz, H^{3'}), 8.23 (m, 4H, H⁶ and H^{6'}), 7.92 (m, 4H, H⁴ and H^{4'}), 7.60 (m, 4H, H⁵ and H^{5'}), 7.26 (m, 6H, H^{9'} and H¹⁸) 7.19 (t, 2H, *J*=6.5 Hz, H⁹), 7.17 (d, 2H, *J*=7.6 Hz, H¹⁹), 7.06 (s, 2H, *H*CONH), 7.0 (d, 4H, *J*=6.8 Hz, H¹⁷), 6.79 (t, 2H, *J*=7.7 Hz, H^{10'}), 6.70 (t, 2H, *J*=7.7 Hz, H¹⁰), 6.69 (s, 2H, *H*CONH'), 6.63 (d, 2H, *J*=7.7 Hz, H^{11'}), 6.50 (d, 2H, *J*=7.6 Hz, H¹¹), 3.84 (s, 2H, H^{13'}), 2.89 (s, 2H, H¹³), 1.5 (d, 2H, *J*²=13.0 Hz, H^{14A}), 1.16 (m, 2H, H¹⁵), -0.18 (d, 2H, *J*²=13.0 Hz, H^{14B}), -0.35 (d, 2H, *J*²=15.7 Hz, H^{14A'}), -0.54 (d, 6H, *J*=6.7 Hz, H¹⁶), -0.73 (d, 2H, *J*²=15.3 Hz, H^{14B'}), -2.04 ppm (s, 2H, -NH₂).

¹³C NMR (100 MHz, CDCl₃, 298K): δ 207.05, 164.68, 164.61, 144.24, 140.46, 139.37, 138.46, 134.31, 133.95, 133.44, 132.59, 131.79, 131.32, 130.92, 130.79, 130.56, 130.04, 128.77, 128.60, 128.51, 127.33, 126.93, 125.94, 124.59, 123.97, 123.53, 122.05, 121.90, 120.70, 116.16, 115.76, 62.38, 55.65, 51.23, 31.73, 31.06, 29.21, 22.08, 18.08, 14.26, 11.57 ppm.

Compound **4**, ¹H NMR spectrum (400 MHz, CDCl₃, 298 K)

Compound 4, COSY 2D NMR spectrum (400 MHz, CDCl₃, 298 K)

Compound 5, NMR spectra

¹H NMR (500 MHz, CDCl₃, 330K): δ 8.90 (s, 2H, H_{βpyr}), 8.89 (s, 2H, H_{βpyr}), 8.88 (d, 2H, *J*=5.14 Hz, H_{βpyr}), 8.81 (d, 2H, *J*=4.8 Hz, H_{βpyr}), 8.77 (d, 2H, *J*=8.28 Hz, H³), 8.65 (d, 2H, *J*=8.11 Hz, H^{3'}), 8.13 (d, 2H, *J*=6.6 Hz, H⁶), 7.96 (d, 2H, *J*=7.4 Hz, H^{6'}), 7.91 (t, 2H, *J*=7.6 Hz, H⁴), 7.87 (t, 2H, *J*=7.5 Hz, H^{4'}), 7.60 (t, 2H, *J*=7.5 Hz, H⁵), 7.53 (t, 2H, *J*=7.5 Hz, H^{5'}), 7.21 (d, 2H, *J*=8.0 Hz, H⁹), 7.18 (m, 6H, H¹⁹ and H²⁰), 7.11 (d, 2H, *J*=7.7 Hz, H^{9'}), 7.08 (s, 2H, *H*CONH), 7.01 (s, 2H, *H*CONH[']), 6.69 (t, 4H, *J*=7.5 Hz, H¹⁰ and H^{10'}), 6.68 (d, 2H, *J*=7.7 Hz, H¹⁸), 6.57 (d, 2H, *J*=7.7 Hz, H^{11'}), 6.48 (d, 2H, *J*=7.6 Hz, H¹¹), 4.54 (s, 2H, H^{13'}), 4.43 (s, 2H, H¹³), 3.15 (s, 6H, H²¹), 2.60 (dd, 2H, *J*=6.04, 8.95 Hz, H¹⁵), 2.24 (dd, 2H, *J*=9.3 Hz, *J*²=13.6 Hz, H^{4'}), 2.06 (d, 2H, *J*=14.2 Hz, H^{14A}), 1.68 (d, 2H, *J*=14.4 Hz, H^{14A'}), 1.40 (dd, 2H, *J*=5.7 Hz, *J*²=13.5 Hz, H^{16'}), 1.08 (d, 2H, *J*=14.7 Hz, H^{14'B}), 0.93 (d, 2H, *J*=15.4 Hz, H^{14B}), -2.31 ppm (s, 2H, -NH₂).

¹³C NMR (125 MHz, CDCl₃, 298K): δ 171.40, 165.09, 165.05, 138.91, 138.82, 138.19, 137.30, 134.27, 134.16, 134.06, 133.86, 131.89, 131.57, 131.39, 131.13, 130.50, 130.41, 129.07, 128.57, 128.49, 126.78, 126.61, 126.14, 124.28, 123.94, 123.78, 122.06, 121.85, 115.56, 115.28, 64.01, 53.12, 52.72, 51.22, 32.52, 29.84, 14.26 ppm.

Compound 5, ¹H NMR spectrum (500 MHz, CDCl₃, 298 K)

Compound 5, 2D ROESY NMR spectrum (500 MHz, CDCl₃, 298 K)

Structural data of 5

Empirical formula C195 H155 Cl9 N20 O16 Extended formula 2(C₉₆ H₇₆ N₁₀ O₈), 3(C H Cl₃) Formula weight 3353.43 Temperature 150 K Wavelength 0.71073 Å Crystal system, space group triclinic, P 1 Unit cell dimensions a = 12.7372(10) Å, $\alpha = 82.596(3)^{\circ}$ $b = 13.5883(12) \text{ Å}, \beta = 76.789(3)^{\circ}$ c = 26.157(3) Å, $\gamma = 82.552(3)^{\circ}$ 4347.0(7) Å³ Volume Z, Calculated density $1, 1.281 (g.cm^{-3})$ 0.215 mm^{-1} Absorption coefficient F(000)1746 Crystal size 0.530 x 0.440 x 0.100 mm Crystal color blue Theta range for data collection 2.096 to 27.495 ° -16, 15 h_min, h_max -17, 17 k_min, k_max l_min, l_max -33, 33 Reflections collected / unique $93932 / 36039 [R(int)^a = 0.0408]$ Reflections [I> 2σ] 29468 Completeness to theta_max 0.998 Absorption correction type multi-scan Max. and min. transmission 0.979, 0.856 Refinement method Full-matrix least-square on F^2 Data / restraints / parameters 36039 / 3 / 2035 Flack parameter 0.07(6)^bGoodness-of-fit 1.077 $R1^c = 0.0825, wR2^d = 0.2298$ Final *R* indices $[I>2\sigma]$ $R1^c = 0.0962, wR2^d = 0.2441$ *R* indices (all data) Largest diff. peak and hole 1.309 and -0.823 e⁻.Å⁻³ ${}^{a}R_{int} = \sum |F_{o}^{2} - \langle F_{o}^{2} \rangle| / \sum [F_{o}^{2}]$ ${}^{b}S = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / (n - p)\}^{1/2}$ ${}^{c}R1 = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|$ ${}^{d}wR2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}$ w = 1 / [\sigma(F_o^2) + aP^2 + bP] where P = [2F_c^2 + MAX(F_o^2, 0)] /3

Computational data

	τ_1	τ_2	τ_3	τ_{1} ,	$\tau_{2'}$	$\tau_{3'}$	d
Conformation A	-37	139	-75	24	-171	127	5.94
upper side							
Conformation A	-24	110	-75	14	160	150	5.76
lower side							
Conformation B	-31	-175	-156	31	-118	76	5.65
upper side							
Conformation B	-32	122	-76	21	178	136	5.90
lower side							
5A upper side	-27	115	-67	16	167	142	6.25
5A lower side	-27	115	-67	16	167	142	6.25
5B upper side	-17	-160	-156	21	-107	74	6.31
5B lower side	-28	116	-67	17	170	138	6.27

Table S1. Selected torsional angles $(\tau, \circ)^a$ and distance (d, Å) of C α from the centroid of the porphyrin of the two crystallographic independent molecules of compound **5** and of the corresponding B3LYP/6-31G(d) optimized structures.

^a τ_1 : N-CO-C8-C13; τ_2 : C13-C12-C14-N; τ_3 : C12-C14-N-C14'; τ_1 : N-CO-C8'-C13'; τ_2 : C13'-C12'-C14'-N; τ_3 : C12'-C14'-N-C14.

Table S2. Relative energy (E_{rel} , kcal/mol), selected torsional angles (τ , °),^a and distance (d, Å) of C α from the centroid of the porphyrin, of the conformers the model compound **10** and of the TSs for the *trans* and *cis* attack of α -methylstyrene to the terminal carbene species deriving from Fe(TPP)(OMe).

	E _{rel}	$ au_1$	τ_2	τ_3	τ_{1}	τ_{2} ,	$\tau_{3'}$	d
10A	0.00	-25	109	-69	16	160	157	5.80
10B	0.00	-16	-160	-157	25	-109	69	5.80
10C	1.90	154	-142	84	-154	142	-84	10.92
10D	2.16	33	54	-178	-144	81	66	9.07
10E	2.16	144	-81	-66	-33	-54	178	9.07
trans-10A-TS	6.83	-28	137	-65	-7	-143	115	8.75
trans-10B-TS	7.25	14	147	-108	21	-126	60	8.56
trans-10C-TS	1.55	156	-138	81	-164	137	-83	11.98
trans-10D-TS	0.00	31	46	-173	-150	76	66	9.81
trans-10E-TS	0.41	147	-75	-65	-37	-47	174	9.76
cis-10A-TS	7.91	-26	136	-67	-5	-146	108	8.71
cis-10B-TS	7.86	16	141	-116	25	-125	58	8.62
cis-10C-TS	2.02	155	-136	79	-164	139	-84	11.97
cis-10D-TS	0.53	32	45	-173	-149	73	66	9.76
cis-10E-TS	1.18	147	-79	-66	-35	-46	173	9.77

^a τ_1 : N-CO-C8-C13; τ_2 : C13-C12-C14-N; τ_3 : C12-C14-N-C14'; τ_1 : N-CO-C8'-C13'; τ_2 : C13'-C12'-C14'-N; τ_3 : C12'-C14'-N-C14'.

Table S3. Relative energy (E_{rel} , kcal/mol), selected torsional angles (τ , °),^a and distance (d, Å) of C α from the centroid of the porphyrin, of the TSs for the *trans* and *cis* attack of α -methylstyrene to the terminal carbene species deriving from the model ligand **11**.

	E _{rel}	τ_1	τ_2	τ_3	τ_{1} ,	τ_{2} ,	τ_{3} ,	d
trans-(R,R)-11D-TS	0.82	31	39	-170	-150	76	71	9.71
trans-(R,R)-11E-TS	0.35	148	-71	-67	-36	-48	174	9.70
trans-(S,S)-11D-TS	1.19	38	37	-170	-148	77	71	9.59
trans-(S,S)-11E-TS	0.00	150	-74	-69	-30	-47	172	9.73
<i>cis</i> -(R,S)- 11D-TS	1.28	31	38	-171	-151	73	71	9.68
<i>cis</i> -(R,S)- 11E-TS	1.11	147	-77	-69	-35	-47	173	9.68
<i>cis</i> -(S,R)- 11D-TS	1.82	36	36	-169	-148	81	73	9.60
<i>cis</i> -(S,R)- 11E-TS	0.47	150	-71	-69	-31	-45	172	9.69

^a τ_1 : N-CO-C8-C13; τ_2 : C13-C12-C14-N; τ_3 : C12-C14-N-C14'; τ_1 : N-CO-C8'-C13'; τ_2 : C13'-C12'-C14'-N; τ_3 : C12'-C14'-N-C14.

Table S4. Relative energy (E_{rel} , kcal/mol), selected torsional angles (τ , °),^a and distance (d, Å) of C α from the centroid of the porphyrin, of the TSs for the *trans* and *cis* attack of α -methylstyrene to the terminal carbene species deriving from the model ligand **12**.

	E _{rel}	τ_1	τ_2	τ_3	$\tau_{1'}$	τ_{2} ,	τ_{3} ,	d
trans-(R,R)-12D-TS	0.23	28	52	-175	-150	73	69	9.79
trans-(R,R)-12E-TS	0.43	148	-73	-68	-38	-43	171	9.77
trans-(S,S)-12D-TS	0.63	35	50	-175	-147	72	67	9.73
trans-(S,S)-12E-TS	0.00	151	-75	-69	-31	-42	170	9.81
<i>cis</i> -(R,S)- 12D-TS	0.82	29	50	-175	-149	71	68	9.73
<i>cis</i> -(R,S)- 12E-TS	1.14	147	-79	-70	-36	-42	170	9.75
<i>cis</i> -(S,R)- 12D-TS	1.20	34	50	-175	-147	76	68	9.74
<i>cis</i> -(S,R)- 12E-TS	0.49	150	-73	-69	-32	-41	170	9.75

^a τ_1 : N-CO-C8-C13; τ_2 : C13-C12-C14-N; τ_3 : C12-C14-N-C14'; τ_1 : N-CO-C8'-C13'; τ_2 : C13'-C12'-C14'-N; τ_3 : C12'-C14'-N-C14.