Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Trigonal prismatic anionic iron (III) complex of a radical *o*-imino-benzosemiquinonate derivative: Structural and spectral analysis

Sandeepta Saha^a, Chirantan Roy Choudhury^c*, Carlos J. Gómez-Garcia^d, Samia Benmansour^d, Eugenio Garribba^e, Antonio Frontera^f, Corrado Rizzoli^g, Samiran Mitra^{a,b}*

^aDepartment of Chemistry, Jadavpur University, Raja S.C. Mullick Road, Kolkata-700032, West Bengal, India.

^b Department of Chemistry, Heritage Institute of Technology, Chowbaga Road, Anandapur, Kolkata – 700107, India.

^c Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India.

^d Instituto de Ciencia Molecular (ICMol), Universidad de of Valencia, Parque Científico, 46980 Paterna, Spain.

^e Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy

^f Departament de Química, Universitat de les Illes Balears, Crta. deValldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.

^g Dipartimento S.C.V.S.A., University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.

> * Corresponding author: Tel: + 91-33-2414 6666 (Extn. 2779); fax: + 91-33-2414 6414/+91-33-25241977

E-mail address: samiranju92@gmail.com (Samiran Mitra)

and <a href="mailto:creative-commonstance-commons

Fig. S1: (a) Simulated and (b) powder X-ray diffraction pattern of complex 1.

Fig. S2: IR spectrum of complex 1.

Fig. S3: Plot of the three highest *alpha* SOMOs of complex **1**.

atoms	distance	atoms	distance	atoms	distance	atoms	distance
Fe1-O6	2.006(2)	O2-C7	1.223(5)	C5-C6	1.360(6)	C23-C24	1.388(6)
Fe1-O3	2.008(3)	O3-C9	1.290(4)	C8-C13	1.419(5)	C24-C25	1.377(6)
Fe1-O1	2.018(3)	O4-C28	1.280(5)	C8-C9	1.443(5)	C25-C26	1.363(7)
Fe1-N1	2.045(3)	O5-C28	1.235(5)	C9-C10	1.417(5)	C26-C27	1.383(7)
Fe1-O4	2.053(3)	O6-C30	1.281(4)	C10-C11	1.375(5)	C29-C34	1.413(5)
Fe1-N2	2.055(3)	C1-C2	1.393(5)	C11-C12	1.427(5)	C29-C30	1.449(5)
N1-C8	1.339(4)	C1-C6	1.399(5)	C12-C13	1.354(5)	C30-C31	1.432(5)
N1-C2	1.409(5)	C1-C7	1.498(6)	C22-C23	1.387(5)	C31-C32	1.368(5)
N2-C29	1.338(4)	C2-C3	1.385(5)	C22-C27	1.389(6)	C32-C33	1.428(5)
N2-C23	1.417(5)	C3-C4	1.384(5)	C22-C28	1.505(6)	C33-C34	1.348(5)
O1-C7	1.290(5)	C4-C5	1.380(6)				

Table **S1.** Selected bond lengths (\AA) for **1**.

Table **S2.** Selected bond angles (°) for **1**.

Atoms	angle	Atoms	angle	Atoms	angle
	ungie		ungie		ungie
01-Fe1-O3	135.17(11)	O3-Fe1-O4	85.62(11)	O4-Fe1-N1	128.13(12)
01-Fe1-O4	77.98(12)	O3-Fe1-O6	129.83(12)	O4-Fe1-N2	82.70(13)
01-Fe1-O6	87.54(12)	O3-Fe1-N1	76.27(12)	O6-Fe1-N1	88.72(12)
01-Fe1-N1	81.75(12)	O3-Fe1-N2	87.39(12)	O6-Fe1-N2	76.25(13)
01-Fe1-N2	130.40(12)	O4-Fe1-O6	136.74(11)	N1-Fe1-N2	142.64(13)