Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Interfacial pH and polarity detection of amphiphilic self-assemblies using a single Schiff-base molecule

Rini Majumder,^a Yeasmin Sarkar,^a Sanju Das,^{a,b} Ambarish Ray,^b and Partha Pratim Parui^{*a}

^aDepartment of Chemistry, Jadavpur University, Kolkata 700032, India.

^bDepartment of Chemistry, Maulana Azad College, Kolkata 700013, India.

Contents

1. Fluorescence transient decay analysis of SBOH-Z-SBOH	p S2
2. Theoretically calculated UV-Vis absorption parameters	p S3
3. Fluorescence anisotropic decay analysis	p S4
4. ¹ H and ¹³ C NMR spectra of SBOH-Z-SBOH	p S5
5. ESI-MS ⁺ spectra of SBOH-Z-SBOH	p S6
6. pH dependent reversible spectral changes for SBOH-Z-SBOH	p S7
7. pH dependent fluorescence spectra of SBOH-Z-SBOH	p S8
8. UV-Vis absorption studies of SBOH-Z-SBOH in THF/buffer at different pH	p S9
9. Solvent composition dependent UV-Vis absorption studies of SBOH-Z-SBOH	p S10
10. Solvent property dependent absorption profile of SBOH-Z-SBOH	p S11
11. Polarity dependent reversible spectral changes for SBOH-Z-SBOH	p S12
12. Absorption spectra of SBOH-Z-SBOH with amphiphilic molecules	p S13
13. Fluorescence Anisotropy decays	p S14
14. Absorption spectra for binding studies	p S15
15. Absorption spectra of SBOH-Z-SBOH with SDS micelle	p S16
16. pH-metric titration profile of SBOH-Z-SBOH at different medium polarity	p S17
17. UV-Vis absorption spectra at various pH and polarity	p S18

Table S1: Fluorescence transient decay parameters of SBOH-Z-SBOH (5.0 μ M) with residual of fitting (χ^2) in aqueous buffer solution at different pH values. Excitation and emission wavelengths were 450 and 500/530 nm respectively.

pН	Life time (ns)	χ^2
7.0	0.47	1.02
9.8	0.51 4.31	1.05
11.0	4.79	1.01

Table S2: Electronic excitation wavelength (nm), oscillator strengths (f_{cal}), absorption maxiam (λ_{max}) and extinction coefficient (ϵ) of non-ionic (SBOH⁰-Z-SBOH⁰), partially zwitterionic (SBOH⁰-Z-SBOH[±]), di-anionic (SBO⁻-Z-SBO⁻) forms obtained by the TD-DFT/B3LYP/6-31G++(d,p) calculation on ground state geometries in various solvent with CPCM dielectric solvation model. The experimentally obtained UV-Vis absorption (Obs/Abs) parameters for SBOH-Z-SBOH are depicted for comparison.

	Form	Solvent	λ _{max} (nm)	f _{cal}	ε×10 ⁻⁴ (M ⁻¹ cm ⁻¹)
	SBOH ⁰ -Z-SBOH ⁰	THF	315	0.160	0.887
TD-DFT	SBOH ⁰ -Z-SBOH [±]	Water	385 315	0.132 0.098	0.657 0.582
	SBO ⁻ -Z-SBO ⁻	Water	390	0.203	1.205
		THF	330		1.005
Obs/Abs	SOBH-Z-SOBH	Buffer, pH 7.0	420 330	-	0.629 0.454
		Buffer, pH 11.0	395		1.103

Table S3: The correlation time (τ_c) with residual of single exponential fitting (χ^2) for SBOH-Z-SBOH (5.0 μ M) obtained from fluorescence anisotropic decays in presence of different self-assembled systems at pH 10.5.

system	τ _c (ns)	χ^2
Buffer	0.63	1.02
CTAB	1.90	1.03
DDAB	2.01	0.98
TX-100	1.02	1.09
DOPC	1.11	1.03

Fig. S1. ¹H and ¹³C NMR spectra of SBOH-Z-SBOH in CDCl₃ and DMSO-d₆ respectively.

Fig. S2. ESI-MS⁺ spectra of SBOH-Z-SBOH in water: m/z for [SBOH-Z-SBOH+H]⁺: obs'd – 371.4112, cal'd – 371.44848)

Fig. S3. pH dependent UV-Vis absorption spectral changes of SBOH-Z-SBOH (5.0 μ M) in buffer medium. The pH was increased from 7.0 (black) to 12.0 (red) by an addition of 0.1 M NaOH and subsequently decreased to 7.0 (red, broken) by an addition of 0.1 M HCl in 20 mM tris-HCl buffer.

Fig. S4. Fluorescence spectra of SBOH-Z-SBOH (5.0 μ M) in buffer/THF mixed medium at different dielectric constants (wt % of THF in the mixtures are depicted in bracket): black, 8.0 (1.0); dark yellow, 18.3 (0.8); blue, 32.0 (0.6); pink, 48.2 (0.4); green, 64.6 (0.2); and red, 78.5 (0.0).

Fig. S5. UV-Vis absorption spectra of SBOH-Z-SBOH (5.0 μ M) in 1:1 THF/buffer solution at different pH: violet, 5.5; brown, 7.0; pink, 8.0; green, 10.0.

Fig. S6. Solvent composition dependent UV-Vis absorption spectra of SBOH-Z-SBOH (5.0 μ M): pink, acetonitrile ($\kappa \sim 37.5$); blue, THF/water mixture (52.5% (w/w) THF in the mixture, $\kappa \sim 37.5$); red, THF/water mixture (70% (w/w) THF in the mixture, $\kappa \sim 24.5$); black, EtOH ($\kappa \sim 24.5$).

Fig. S7. UV-Vis absorption spectra of SBOH-Z-SBOH (5.0 μ M) under identical κ (~ 37.5) at pH 8.0: red, buffer/EtOH mixed medium (75% (w/w) EtOH in the mixture); blue, acetonitrile; black, buffer/glycerol mixed medium (80% (w/w) glycerol in the mixture).

Fig. S8. Solvent dielectric constant (κ) dependent UV-Vis absorption spectral change of SBOH-Z-SBOH (5.0 μ M). The κ was increased for the mixed MeOH medium from 33.0 (blue) for pure MeOH to 55.0 (red) by an addition of water (50% (w/w) of water in the MeOH/water mixture) and subsequently decreased to 33.0 (broken, blue) by addition of THF (48 and 26% (w/w) of THF and water in THF/water/MeOH mixture, respectively).

Fig. S9. UV-Vis absorption spectra of SBOH-Z-SBOH (5.0 μ M) in presence of increasing concentration of different self-assembled systems in 20 buffer, pH 7.0: CTAB (0–5.0 mM), DDAB (0–3.0 mM), TX-100 (0–6.0 mM) and DOPC (0–4.0 mM).

Fig. S10. Fluorescence anisotropic decay curves of SBOH-Z-SBOH (5.0 μ M) in (A) absence and (B–E) presence of deviation saturated concentration of different self-assembled systems at pH 10.5: (B), CTAB (5.0 mM); (C), DDAB (3.0 mM); (D), TX-100 (6.0 mM) and (E) DOPC (4.0 mM).

Fig. S11. UV-Vis absorption spectra of SBOH-Z-SBOH (5.0 μ M) in presence (solid) of different deviation-saturated concentration of ULVs, and (broken) its filtrated solution: (A) DDAB: red, pH 9.0; black, pH 8.0. (B) DOPC: pink, pH 11.5; blue, pH 10.5. The filtrated solution was obtained using a 100K MW cut-off filter.

Fig. S12. UV-Vis absorption spectra of SBOH-Z-SBOH (5.0 μ M) in the absence (dash) and in presence of SDS (solid) in different pH: black, pH 12.5; blue, pH 9.5; red, pH 7.0.

Fig. S13. (A) pH dependent UV-Vis absorption spectra of SBOH-Z-SBOH (5.0μ M) in 53% (w/w) ethanol containing buffer medium. (B) Molar extinction coefficient (ϵ) at the absorption intensity maxima (395–420 nm) at different pH under different solvent polarity (κ) of ethanol/buffer mixed: black, 78.5; brown, 70.0; orange, 60.0; cyan, 50.0; green, 43.0.

Fig. S14. UV-Vis absorption spectra of SBOH-Z-SBOH (5.0 μ M) in buffer of different pH (10.8, gray; 10.0, blue; 8.0, red) and κ (solid, 72.0; short dash, 48.0; broken, 25.0) of the medium.