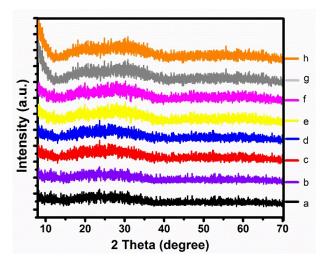
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information


Necessarity of calcination in preparation of phosphotungstic acid@TiO₂

composites? A case study on facile sol-gel synthesis of nanospheres and their

superior performance in catalytic oxi-desulfurization

Zareen Zuhra, Huan Lei, Zipeng Zhao, Yunshan Zhou*, Lijuan Zhang* and Libo Qin

State Key Laboratory of Chemical Resource Engineering, Institute of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China

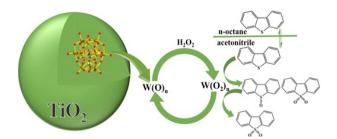

Fig. S1. Powder XRD patterns of $PW_{12}@TiO_2$ spherical samples: a. uncal-10_ $PW_{12}@TiO_2$, b. cal-10_ $PW_{12}@TiO_2$, c. uncal-20_ $PW_{12}@TiO_2$, d. cal-20_ $PW_{12}@TiO_2$, e. uncal-30_ $PW_{12}@TiO_2$, f. cal-30_ $PW_{12}@TiO_2$, g. uncal-40_ $PW_{12}@TiO_2$, and h. cal-40_ $PW_{12}@TiO_2$.

Table S1. ICP element analysis results of spherical un-calcinated PW12@TiO2 with different PW12 loading amounts

Samples		μg/mL				PW ₁₂ content	
	Р	W	Ti	W/P	Gel ^a (wt%)	Product ^b (wt%)	
Un-cal_PW ₁₂ @TiO ₂ (10 wt%)	1.15	76.5	546	11.7	10	9.5	
Un-cal_PW12@TiO2(20 wt%)	2.25	214	388	11.6	20	19.6	
Un-cal_PW ₁₂ @TiO ₂ (30 wt%)	3.02	260	272	11.8	30	29.3	
Un-cal_PW ₁₂ @TiO ₂ (40 wt%)	4.14	321	155	11.7	40	39.4	

^a theoretical loading amount of PW₁₂ calculated from the ratio of the raw materials during the sample preparation process; ^b actual loading amount of PW₁₂ calculated from the results of ICP analysis.

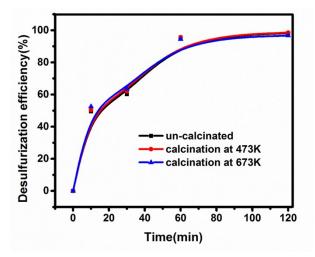
The PW_{12} contents in final un-calcinated products of PW_{12} @TiO₂ catalysts are detected by ICP and are listed in Table S1. The determined loadings of PW_{12} are found very close to the expected values, indicating minimum loss of PW_{12} in our prepared process.

Scheme S1 The schematic diagram illustrating reaction mechanism of ECODS in this work.

(i) In the presence of excess amount of H_2O_2 , metal precursor of phosphotungstic acid (W(O)_n) is peroxidized and disaggregated to form anionic peroxometal complex (W(O₂)_n) and as discussed in the main manuscript the DBT concentration in n-octane phase reached an equilibrium value of 47% in n-octane and 53% in acetonitrile before the addition of catalyst at room temperature, due to liquid–liquid extraction processes.

$$W(O)_{n}^{-}Q^{\dagger} \xrightarrow{k'_{1}/k'_{2}} W(O)_{n}^{-} + Q^{\dagger}$$
(1)

$$W(O)_{n}^{-} + H_{2}O_{2} \xrightarrow{k_{2}} W(O_{2})_{n}^{-} + H_{2}O$$
(2)


$$W(O_{2})_{n}^{-} + Q^{\dagger} \xrightarrow{k'_{3}/k'_{4}} W(O_{2})_{n}^{-}Q^{\dagger}$$
(3)

(ii) DBT is oxidized by the peroxometal complex in the acetonitrile phase rapidly into more polar products, such as sulfoxides and sulfones and these species reside in the polar phase, acetonitrile.

$$W(O_2)_n Q^+ + DBT \xrightarrow{k_1} Sulfoxide + W(O)_n Q^+$$
 (4)

Sulfoxide +
$$W(O_2)_n Q^+ \xrightarrow{k_3} Sulfones + W(O)_n Q^+ \xrightarrow{(5)}$$

(iii) The generated reduced species are responsible for continuing the next catalytic cycle. ^{s1-s7}

Fig. S2. Desulfurization efficiencies of $30_{PW_{12}}$ TiO₂ nano spheres prepared at different calcination temperatures. Reaction condition: O/S, 10; catalyst amount, 0.5% of n-octane; temperature, 60 °C; reaction time, 2h.

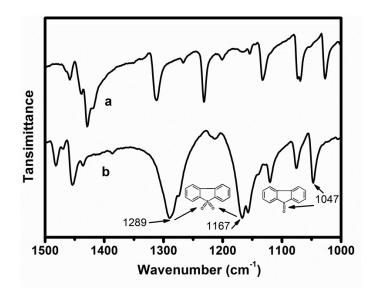


Fig. S3. IR spectra of DBT (a) and its oxidation products (b)

In order to estimate the quantity of PW_{12} that has lost during the catalytic activity after 10th use of ECODS, the recycled un-calcinated 30_PW_{12} @TiO₂ was subjected to ICP elemental analysis to estimate the quantities of PW_{12} content and shown as in table below.

Table S2. ICP element analysis results of spherical fresh and 10th used un-calcinated 30_PW₁₂@TiO₂

Samples	μg/mL				PW ₁₂ content	
	Р	W	Ti	W/P	Gel ^a (wt%)	Product ^b (wt%)
Un-cal_PW ₁₂ @TiO ₂ (Fresh 30 wt%)	3.02	260	272	11.8	30	29.3
Un-cal_PW ₁₂ @TiO ₂ (10^{th} used 30 wt%)	2.95	254	270	11.7	-	28.6

^a theoretical loading amount of PW₁₂ calculated from the ratio of the raw materials during the sample preparation process; ^b actual loading amount of PW₁₂ calculated from the results of ICP analysis.

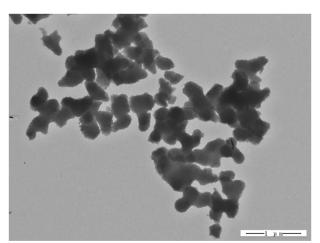


Fig. S4. TEM image of uncal-30_PW₁₂@TiO₂ after 10th catalytic cycle.

References

- s1. H. Lu, J. Gao, Z. Jiang, F. Jing, Y. Yang, G. Wang, C. Li, J. Catal. 239 (2006) 369-375
- s2. J. Gao, Wang, Jiang, Lu, Yang, Jing, Li, J. Mol. Catal. A: Chem. 258 (2006) 261–266
- L. Cedeño-Caero, H. Gomez-Bernal, A. Fraustro-Cuevas, H.D. Guerra-Gomez, R. Cuevas-Garcia, Catal. Today 133–135 (2008) 244–254
- s4. F. Al-Shahrani, T. Xiao, S.A. Llewellyn, S. Barric, Z. Jiang, H. Shi, G. Martinie, M.L.H. Green, Appl. Catal. A Gen. 73 (2007) 311–316
- s5. D.H. Wang, E.W. Qian, H. Amano, K. Okata, A. Ishihara, T. Kabe, Appl. Catal. A Gen. 253 (2003) 91–99
- s6. J.L. García-Gutiérrez, G.A. Fuentes, M.E. Herna'ndez-Tera'n, F. Murrieta, J.Navarrete, F. Jime'nez-Cruz, Appl. Catal. A Gen. 305 (2006) 15–20.
- J.L. García-Gutiérrez, G.A. Fuentes, M.E. Hernández-Terán, P. García, F. MurrietaGuevara, F. Jiménez-Cruz, Appl. Catal., A 334 (2008) 366–373.