Electronic Supplementary Information (ESI) for New Journal of Chemistry:

Energy transfer dynamics and time resolved photoluminescence in BaWO₄:Eu³⁺ nanophosphors synthesized by mechanical activation

Paramananda Jena^a, Santosh K. Gupta^{b*}, Narendra Kumar Verma^a, Akhilesh Kumar Singh^{a*}, R.M. Kadam^b

^a School of Materials Science and Technology, Indian Institute of Technology (Banaras

Hindu University), Varanasi-221005, Uttar Pradesh, INDIA

^b Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085,

INDIA.

Corresponding Author: Email: <u>aksingh.mst@itbhu.ac.in</u>, (**AKS**), <u>santoshg@barc.gov.in</u>, <u>santufrnd@gmail.com</u>, (**SKG**)

Figure S1 (a) Schematic representation of (a) Scheelite type tetragonal unit cell of $BaWO_4$ and (b) Ba site coordination environment in $[BaO_8]$ cluster.

Table A Refined structural parameters of the pure and various compositions of $BaWO_4:Eu^{3+}$ samples obtained from Rietveld analysis.

BWO											
Atom	X	Y	Z Biso.		Occup.						
Ba/Eu	0.00	0.2500	0.62500	0.084(1)	1/0						
W	0.00	0.2500	0.12500 2.515(1)		1						
0	0.253(2)	0.1134 (2)	0.0899 (8)	0.00	4						
BEW 0.1 mol%											
Ba	0.00	0.250	0.625 0.00		0.999						
Eu	0.00	0.250	0.125	1.931 (2)	0.001						
W	0.00	0.250	0.125	1.931 (2)	1						
0	0.249 (2)	0.112 (2)	0.095(8)	0.00	4.0005						
BEW 0.5 mol%											
Ba	0.00	0.250	0.625	1.042(1)	0.995						
Eu	0.00	0.250	0.125	0.970(8)	0.005						
W	0.00	0.250	0.125	0.970(8)	1						
0	0.248(2)	0.113(2)	0.077(8)	1.274(5)	4.0025						
BEW 1 mol%											
Ва	0.00	0.250	0.625	0.709(1)	0.990						
Eu	0.00	0.250	0.125	1.126(9)	0.010						
W	0.00	0.250	0.125	1.126(9)	1						
0	0.2504(2)	0.11004(2)	0.0801(8)	0.868(5)	4.005						
BEW 2 mol%											
Ba	0.00	0.250	0.625	0.00	0.980						
Eu	0.00	0.250	0.125	2.436(1)	0.020						
W	0.00	0.250	0.125	2.436(1)	1						
0	0.258(2)	0.10994(2)	0.10167(1)	0.00	4.01						
BEW 5 mol%											
Ba	0.00	0.250	0.625	0.00	0.95						
Eu	0.00	0.250	0.125	3.063(1)	0.05						
W	0.00	0.250	0.125	2.184(1)	1						
0	0.271(2)	0.1004(2)	0.09703(1)	1.201(5)	4.025						

Raman active	Present work BaWO ₄	Band positions in cm ⁻¹ References			
modes (cm ⁻¹)	& Eu ³⁺ doped BaWO ₄				
	calcined at 1100 °C (cm ⁻¹)	14	44	45	46
$v_1(A_g)$	926	924	925	926	920.3
$v_3(\mathbf{B}_g)$	831	830	831	831	829
v ₃ (E _g)	794	793	795	795	790
v ₄ (E _g)	354	354	353	352	-
$\upsilon_4 \left(B_g \right)$	344	344	345	344	-
$\upsilon_2 \left(A_g / B_g \right)$	332	330/332	332	331/332	330
R (E _g)	191	190	191	191	188
R (A _g)	152	150	150	150	-
T (B _g)	135	132	132	133	-
T (E _g)	102	101	101	101	98
T (B _g)	74	74	75	74	72
T (Eg)	62	62	63	63	60

Table B Band positions of the Raman active modes (cm^{-1}) of pure and BaWO₄:Eu³⁺ samples obtained from the present work (Fig.5) along with the reported literature results.

Figure S2 SEM images of the pure and various compositions of $BaWO_4$: Eu^{3+} samples calcined at 1100 °C.

Figure S3 Obtained EDX spectra along with elemental compositions of the pure and $BaWO_4$: Eu^{3+} samples calcined at 1100 ^{O}C .