Dynamic fluorescence quenching by 2,4,6-trinitrophenol in voids of aggregation induced emission based fluorescent probe

Neetu Tripathi, Prabhpreet Singh and Subodh Kumar

Department of Chemistry, Guru Nanak Dev University, Amritsar - 143005, India

e.mail: subodh_gndu@yahoo.co.in; subodh.chem@gndu.ac.in; prabhpreet.chem@gndu.ac.in

	Content	Page
1.	¹ H, ¹³ C and HRMS spectra of 4-(dansylamino)pyridine	page 2
2.	¹ H, ¹³ C and HRMS spectra of PY-DNS	page 3
3.	COSY NMR spectrum of PY-DNS	page 4
4.	Effect of binary mixtures on absorption spectrum of PY-DNS	page 4
5.	Effect of inorganic anions on absorbance and	
	fluorescence intensity of PY-DNS	page 5
6.	SAED and WXRD analysis of PY-DNS	page 6
7.	Front surface steady-state fluorescence quenching of $\ensuremath{\textbf{PY-DNS}}$ with TNP	page 6
8.	Normalized UV-Vis and fluorescence spectra of TNP	
	and PY-DNS and plot of log [TNP] Vs K_f and K_{nr} values of PY-DNS	page 6
9.	¹ H NMR spectra of PY-DNS , TNP and PY-DNS + TNP	page 7
10.	Table SI 1: A comparison of quantum yield, linear range	page 8
	of detection, quenching process, Ksv values and detection limits	
	(solution and contact mode) for TNP with some of	
	the representative reports	

Figure SI 1: ¹H, ¹³C NMR and HRMS spectra of 4-(dansylamino)pyridine

Figure SI 2: ¹H, ¹³C NMR and HRMS spectra of **PY-DNS**

Figure SI 3: Partial COSY spectrum of PY-DNS showing cross peaks and assigned signals

Figure SI 4. (a) The UV-Vis spectra of **PY-DNS** (1 μ M) in DMSO-water binary mixtures; (b) The effect of water ratio on the absorbance of **PY-DNS** at 305 and 410 nm (error bar showing <2 % error).

Figure SI 5: Effect of addition of various anions (6 μ M) on the UV-Vis spectrum of solution of PYDNS (0.3 μ M, H₂O-DMSO 98:2) 1 = PYDNS, 2 = PYDNS + F⁻, 3 = PYDNS + Cl⁻, 4 = PYDNS + Br⁻, 5 = PYDNS + I⁻, 6 = PYDNS + CN⁻, 7 = PYDNS + SCN⁻, 8 = PYDNS + OH⁻, 9 = PYDNS + CH₃COO⁻, 10 = PYDNS + NO₃⁻, 11 = PYDNS + HSO₄⁻, 12 = PYDNS + ClO₄⁻, 13 = PYDNS + HPO₄²⁻, 14 = PYDNS + H₂PO₄⁻, 15 = PYDNS + SO₄²⁻, 16 = PYDNS + CH₃(CH₂)₂COO⁻, 17 = PYDNS + CH₃(CH₂)₈COO⁻, 18 = PYDNS + CH₃(CH₂)₁₂COO⁻, 19 = PYDNS + CH₃(CH₂)₁₁SO₃⁻, 20 = PYDNS + Cholesterol-sulfate, 21 = PYDNS + CH₃(CH₂)₁₁O-SO₃⁻, 22 = PYDNS + dodecylbenzene sulfonate (error bar showing ~ 2% error).

Figure SI 6: Effect of addition of various anions (6 μ M) on the fluorescence intensity of solution of PY-DNS (0.3 μ M, H₂O-DMSO 98:2) 1 = PYDNS, 2 = PYDNS + F⁻, 3 = PYDNS + Cl⁻, 4 = PYDNS + Br⁻, 5 = PYDNS + I⁻, 6 = PYDNS + CN⁻, 7 = PYDNS + SCN⁻, 8 = PYDNS + OH⁻, 9 = PYDNS + CH₃COO⁻, 10 = PYDNS + NO₃⁻, 11 = PYDNS + HSO₄⁻, 12 = PYDNS + ClO₄⁻, 13 = PYDNS + HPO₄²⁻, 14 = PYDNS + H₂PO₄⁻, 15 = PYDNS + SO₄²⁻, 16 = PYDNS + CH₃(CH₂)₂COO⁻, 17 = PYDNS + CH₃(CH₂)₈COO⁻, 18 = PYDNS + CH₃(CH₂)₁₂COO⁻, 19 = PYDNS + CH₃(CH₂)₁₁SO₃⁻, 20 = PYDNS + Cholesterol-sulfate, 21 = PYDNS + CH₃(CH₂)₁₁O-SO₃⁻, 22 = PYDNS + dodecylbenzene sulfonate (error bar showing ~ 2% error).

Figure SI 7. SAED pattern and X-ray powder diffraction of thin film of PY-DNS

Figure SI 8. (a) Front surface steady-state fluorescence quenching of **PY-DNS** with TNP; (b) Plot of fluorescence intensity of **PY-DNS** vs log [TNP] (M) (error bar showing <2 % error).

Figure SI 9. (a) the normalized UV-Vis and fluorescence spectra of TNP and **PYTR-DNS**, respectively. (b) The effect of concentration of log [TNP] on the K_f and K_{nr} values of **PYTR-DNS**.

Figure SI 10. ¹H NMR spectra of **PY-DNS** (5 mM), TNP (5 mM) and **PY-DNS** + TNP (5 mM each) in DMSO- d_6 -water 7:3.

Table SI 1: A comparison of quantum yield, linear range of detection, quenching process, Ksv and detection limits (solution and contact mode) for TNP with some of the representative reports

S. No.	Publication	Material used	Quant um yield	Linear range	Quenching process	Ksv (M ⁻¹)	Detection limit solution (contact mode)
1.	Present work	SOM*	0.71	10 ⁻¹³ -10 ⁻⁵ M	dynamic	6.73 x 10 ⁸	10 ⁻¹³ M (137 fg/cm ²)
2	Sensors and Actuators B, 2016, 231, 79–87	SOM	0.68	10 ⁻¹¹ -10 ⁻⁵ M	static	1.57 x 10 ⁹	10 ⁻¹¹ M (13.7 fg/cm ²)
3.	ACS Appl. Mater. Interfaces 2017, 9, 13415-13421	covalent organic framework	0.08	0.5-10 μM	dynamic	1.0 x 10 ⁷	0.25 μM
4	New J. Chem., 2017, 41, 2786-792	SOM	-	-	both	1.04x10 ⁴	0.95 μM
5	Sensors and Actuators B 245 (2017) 665–673	SOM	0.126	-	-	8.47 x 10 ⁴	576 ppb
6	Chem. Eur. J. 2016, 22, 5288 – 5294	SOM	0.12	-	static	79998	0.8 ppb
7	J. Mater. Chem. C, 2016, 4, 35233530	SOM	0.19	-	static	0.60 x 10 ⁵	~20 ng cm ⁻²
8	J. Org. Chem. 2016, 81, 3597-3602	SOM	-	-	static	5.6 x 10 ⁵	22 nM
9	Talanta 160 (2016) 133– 137	SOM	-	-	static	2.66 x 10 ⁴	1.2 x 10 ⁻⁷
10	RSC Adv., 2015, 5, 73989- 73992	SOM	-	-	both	2.82×10^{4}	7.0 × 10 ⁻⁷
11	J. Mater. Chem. C, 2016, 4, 5578-5583	SOM	0.08	-	-	170000	-
12	Sensors and Actuators B 234 (2016) 34–45	SOM	0.43	-	Static	5.232 x 10 ⁵	11.61 nM
13	RSC Adv., 2016, 6, 41340- 41347	polymer	-	-	-	1.134 x 10 ⁷	4.47 nM (1 x 10 ⁻⁷ M)
14	Tetrahedron Letters 56 (2015) 7094–7099	SOM	0.064 9	-	-	5.95 x 10 ³	-
15	J. Am. Chem. Soc. 2015, 137, 15276–15286	Metallacycl es	0.046	-	-	2.18 X 10 ⁶	0.13 ppb

*SOM= small organic molecules;