Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

## **Electronic Supplementary Information to**

## INSIGHTS INTO THE CHEMISTRY OF BISMUTH NANOPARTICLES

Marlène Branca,<sup>a,†</sup> Kathryn Corp,<sup>a,††</sup> Diana Ciuculescu-Pradines,<sup>a</sup> Yannick Coppel,<sup>a</sup> Pierre Lecante,<sup>b</sup> and Catherine Amiens<sup>a</sup>\*

 <sup>a</sup> Laboratoire de Chimie de Coordination; CNRS; LCC; 205 Route de Narbonne, F-31077 Toulouse, France and Université de Toulouse; UPS, INPT; LCC; F-31077 Toulouse, France.
Tel : + (33) 5 61 33 31 82

Fax : + (33) 5 61 55 30 03 E-mail: catherine.amiens@lcc-toulouse.fr

<sup>b</sup> Centre d'Elaboration de Matériaux et d'Etudes Structurales; CNRS; CEMES; 29 rue J. Marvig, F-31055 Toulouse, France and Université de Toulouse; UPS; F-31055 Toulouse, France.

<sup>&</sup>lt;sup>+</sup> present address : Genes'Ink, 39 avenue Gaston Imbert, Zone Industrielle Rousset, 13106 Rousset Cedex, France

<sup>&</sup>lt;sup>++</sup> present address: Department of Chemistry Box 351700, University of Washington, Seattle, Washington 98195-1700, USA



**S1:** Experimental WAXS data collected from the black powders obtained by evaporation of crude solutions together with a simulation from the crystalline structure (ICSD 64703) From top to bottom: BiNPs-Na, BiNPs-yne, rhombohedral Bi. NB: The crystallite size couldn't be determined with precision.



**S2**: TEM image of the BiNPs-Na spontaneously precipitating from the crude solution (left) and redispersed after evaporation to dryness of the crude solution and naphtalene sublimation (right)



**S3:** <sup>1</sup>H (top) and <sup>13</sup>C{<sup>1</sup>H} (bottom) NMR spectra of BiNPs-Na and comparison to control <sup>1</sup>H NMR spectra of NaHMDS, HMDS and naphtalene ( $d^8$ -THF, \*). (signals in the 30-40ppm range, top spectrum : unidentified impurities)



S4: <sup>1</sup>H ROESY NMR spectrum (mixing time 100ms) of BiNPs-Na in THF-d<sub>8</sub> at 296K.



**S5:** <sup>1</sup>H NMR spectra of BiNPs-Na sample in THF-d<sub>8</sub> with different ratios of HMDS/NaHMDS molecules. (green line: NaHMDS, red line: + 0.2eq. HMDS, blue line: + 0.8eq. HMDS)



**S6:** Enlargement of the most unshielded THF resonance in the <sup>1</sup>H NMR spectra of the BiNPs-Na sample or of a THF solution (in THF- $d_8$ ).



Irradiation offset (Hz)

Irradiation offset (Hz)

**S7:** (left) STD NMR results for BiNPs-Na in THF-d<sub>8</sub> obtained by shifting selective irradiation from on-resonance to  $\pm$  5000 Hz offsets in increments of 1000 Hz. In each experiment, the intensities of naphthalene, (Na)HMDS and THF resonances were measured (I<sub>irr</sub>) and compared to the ones of an off-resonance reference irradiation at  $\delta$ =20ppm (I<sub>ref</sub>). (Right) reference STD experiment performed on a (Na)HMDS in THF-d<sub>8</sub> solution with exactly the same parameters as for the BiNPs-Na sample.



**S8 :** Top: Full <sup>1</sup>H NMR spectra of 1-octyne and BiNPs-yne in THF (after purification, only limited traces of residual naphtalene can be observed in the 7-8ppm region). Bottom: Enlargement of octyne <sup>1</sup>H resonances.